Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Peer-review in 24 hours: How do we do it? > Article retraction > Ethics > Copyright & Licensing Policy > Publication in 72 hours: How do we do it? > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy > Editorial Board > Council of editors > AGRIS
Journals in science databases
About the Journal
72 - !
. 72 DOI .
!
MAIN PAGE > Back to contents
Agriculture
Reference:

Evaluation of new sources of insect protein in the conditions of the Russian Federation, as a sustainable alternative to the traditional types of protein-containing products production
Yumatov Evgenii Nikolaevich

Head of the "ROS&KOR", a limited liabiity company under the laws of the Russian Federation

443017, Russia, g. Samara, per. Yasskii, 10 A, of. 4

trast1207@mail.ru

Abstract.

The subject of the research is comparative analysis of production systems for the production of protein-containing products of the traditional type and the new production system: “New sericulture” (hereinafter referred to as “NS”), where the feeding products of a silkworm (Bombyx mori (L.): shell cocoon, processed into a functional food product (silk and amino acid peptides), and silkworm pupa, are used as an effective and cheap ingredient in animal and aquaculture feed. Production systems analysis, based on public data, is considered with account for all transformation stages: biosynthesis, bioconversion, and technical conversion, including deep technical conversion (proteins modification) right up to end products. The scientific novelty of the research consists in the detected comparable KPIs of all stages of production processes, such as: biosystem index, biosystem protein index, and income per agricultural ares unit, which help assess the effectiveness of material flow which is the basis of economic effectiveness. According to these criteria, significantly outstripping performance indicators of traditional production systems, “NS” can be considered as a sustainable alternative to the traditional types of protein-containing products manufacturing. 
 

Keywords: deep technical conversion, utilization of nitrogen chickens, utilization of nitrogen by the silkworm, protein-containing products, protein conversion efficiency, biosynthesis and bioconversion, production systems, final product yield, effectiveness of cocoon derivatives, land income

DOI:

10.7256/2453-8809.2019.1.29886

Article was received:

30-05-2019


Review date:

31-05-2019


Publish date:

02-07-2019


This article written in Russian. You can find full text of article in Russian here .

References
1.
Babe Group realizuet polnotsennoe shelkovodstvo na iskusstvennom kombikormovom zavode. URL: http://finance.eastmoney.com/a/201901211030371441.html (data obrashcheniya: 06.05.2019).
2.
Buhroo Z. I., Bhat M. A., Kamili A. S., Ganai N. A., Bali G. K., Khan I. L., & Aziz, A. Trends in development and utilization of sericulture resources for diversification and value addition. // Journal of Entomology and Zoology Studies. ‒ 2018. ‒ 6(4). C. 601615.
3.
Cha Y., Lee S. H., Jang S. K., Guo H., Ban Y. H., Park, D., ... & Joo S. S. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene //Toxicology and applied pharmacology. 2017. T. 314. S. 48-54. doi.org/10.1016/j.taap.2016.11.008
4.
Conversion Table. URL: https://ussec.org/resources/conversion-table/ (data obrashcheniya: 20.05.2019).
5.
Daliri E., Oh D., Lee B. Bioactive peptides //Foods. 2017. T.
6.
. 5. S. 32. doi.org/10.3390/foods6050032 6.Do S. G., Park J. H., Nam H., Kim J. B., Lee J. Y., Oh Y. S., & Suh J. G. Silk fibroin hydrolysate exerts an anti-diabetic effect by increasing pancreatic β cell mass in C57BL/KsJ-db/db mice //Journal of veterinary science. 2012. T. 13. . 4. S. 339-344. doi: 10.4142/jvs.2012.13.4.339
7.
Dong H. L. et al. Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets //Scientific reports. 2017. T. 7. . 1. S. 10972. doi: 10.1038/s41598-017-11592-4
8.
Donovan M. D., Flynn G. L., Amidon G. L. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption //Pharmaceutical research. 1990. T. 7. . 8. S. 863-868.
9.
Elsayed A. et al. Formulation and characterization of an oily-based system for oral delivery of insulin //European Journal of Pharmaceutics and Biopharmaceutics. 2009. T. 73. . 2. S. 269-279. doi.org/10.1016/j.ejpb.2009.06.004
10.
EU Legislation. URL: http://ipiff.org/insects-eu-legislation/ (data obrashcheniya: 20.05.2019).
11.
French insect protein producer, Ÿnsect, raises $125m in an investment round. URL: https://www.feednavigator.com/Article/2019/02/21/French-insect-protein-producer-Ynsect-raises-125m-in-an-investment-round (data obrashcheniya: 20.05.2019).
12.
Gonzalez de Mejia E. et al. Lunasin concentration in different soybean genotypes, commercial soy protein, and isoflavone products //Journal of agricultural and food chemistry. 2004. T. 52. . 19. S. 5882-5887. doi: 10.1021/jf0496752
13.
Gous R. M., Emmans G. C., Fisher C. The performance of broilers on a feed depends on the feed protein content given previously //South African Journal of Animal Science. 2012. T. 42. . 1. S. 63-73.
14.
GRAS Notice 000096: Silk protein food powder [PDF]-Free Online Publishing. URL: https://authorzilla.com/1goVX/gras-notice-000096-silk-protein-food-powder.html (data obrashcheniya: 20.05.2019).
15.
Halloran A. et al. Life cycle assessment of edible insects for food protein: a review //Agronomy for Sustainable Development. 2016. T. 36. . 4. S. 57. doi.org/10.1007/s13593-016-0392-8
16.
Han B. K. et al. Hypoglycemic effects of functional tri‐peptides from silk in differentiated adipocytes and streptozotocin‐induced diabetic mice //Journal of the Science of Food and Agriculture. 2016. T. 96. . 1. S. 116-121. doi: 10.1002/jsfa.7067
17.
Heldreth B., Bergfeld W. F., Belsito D. V., Hill R. A., Klaassen C. D., Liebler D., ... & Andersen F. A. Final report of the Cosmetic Ingredient Review Expert Panel on the safety assessment of methyl acetate //International journal of toxicology. 2012. T. 31. . 4_suppl. S. 112S-136S.
18.
Home-AgriProtein. URL: https://agriprotein.com/ (data obrashcheniya: 23.04.2019).
19.
Horie Y., Watanabe K. Daily utilization and consumption of dry matter in food by the silkworm, Bombyx mori (Lepidoptera: Bombycidae) //Applied entomology and zoology. 1983. T. 18. . 1. S. 70-80.
20.
Horie Y., Watanabe K. Daily utilization of nitrogen in food by the silkworm, Bombyx mori (Lepidoptera: Bombycidae) //Applied Entomology and Zoology. 1986. T.
21.
. 2. S. 289-298. 21.Hou Y. et al. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance //Journal of animal science and biotechnology. 2017. T. 8. . 1. S. 24. doi: 10.1186/s40104-017-0153-9
22.
Hu C. et al. Enzyme hydrolysis of silk fibroin and the anti-diabetic activity of the hydrolysates //International Journal of Food Engineering. 2008. T. 4. . 2. doi.org/10.2202/1556-3758.1298
23.
Ikegawa Y. et al. Amelioration of the progression of an atopic dermatitis-like skin lesion by silk peptide and identification of functional peptides //Bioscience, biotechnology, and biochemistry. 2012. T. 76. . 3. S. 473-477. doi.org/10.1271/bbb.110748
24.
Jang S. H. et al. Oral administration of silk peptide enhances the maturation and cytolytic activity of natural killer cells //Immune network. 2018. T. 18. . 5. doi: 10.4110/in.2018.18.e37
25.
Jong-Hwan C. et al. Effect of silk amino acid on motor performance and fatigue of soccer players in the college // Coaching ability development. 2011. T. 13. . 1. S. 189-196.
26.
Jung E. Y. et al. Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles //Nutrition research. 2010. T. 30. . 11. S. 783-790. doi.org/10.1016/j.nutres.2010.10.006
27.
Jung J. H. et al. Whitening and Anti-Aging Activities of Soluble Silkworm Gland Hydrolysate //KSBB Journal. 2013. T.
28.
. 3. S. 196-201. doi: 10.7841/ksbbj.2013.28.3.196 28.Kang Y. et al. Effect of a Fibroin Enzymatic Hydrolysate on Memory Improvement: A Placebo-Controlled, Double-Blind Study //Nutrients. 2018. T. 10. . 2. S. 233. doi.org/10.1016/j.taap.2016.11.008
29.
Kim J. et al. Effects of different doses of silk peptide on energy metabolism during exercise in mice //Journal of exercise nutrition & biochemistry. 2017. T. 21. . 1. S. 21. doi:10.20463/jenb.2017.0056
30.
Kim J. et al. Effects of different doses of silk peptide on energy metabolism during exercise in mice //Journal of exercise nutrition & biochemistry. 2017. T. 21. . 1. S. 21. doi: 10.20463/jenb.2017.0056
31.
Kim J. et al. Silk peptide intake increases fat oxidation at rest in exercised mice //Journal of nutritional science and vitaminology. 2013. T. 59. . 3. S. 250-255. doi.org/10.3177/jnsv.59.250
32.
Kim J. et al. Silk peptide treatment can improve the exercise performance of mice //Journal of the International Society of Sports Nutrition. 2014. T. 11. . 1. S. 35. doi: 10.1186/1550-2783-11-35
33.
Kim T. K. et al. Tyrosine-fortified silk amino acids improve physical function of Parkinsons disease rats //Food Science and Biotechnology. 2011. T. 20. . 1. S. 79-84. doi: 10.1007/s10068-011-0011-z
34.
Kim T. M. et al. Four-week repeated-dose toxicity of silk amino acids in rats //Laboratory Animal Research. 2008. T. 24. . 4. S. 565-573.
35.
Konala N. et al. The effect of bovine milk on the growth of Bombyx mori //Journal of insect science. 2013. T. 13. . 1. S. 98. doi: 10.1673/031.013.9801
36.
Kou X. et al. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates //LWT-Food Science and Technology. 2013. T. 50. . 2. S. 591-598. doi: 10.3390/molecules171112836
37.
Kumar D., Dev P., Kumar R. V. Biomedical applications of silkworm pupae proteins //Biomedical Applications of Natural Proteins. Springer, New Delhi, 2015. S.41-49. doi:10.1007/978-81-322-2491-4
38.
Kumar M. et.al. Effect of pupal solutions on feeding budget nitrogen budget and water budget of mulberry silkworm, bombyx mori l. // International Journal of Current Science Research. ‒ 2015. ‒ T. 1. 5. s. 107.
39.
Kunz R. I. et al. Silkworm sericin: properties and biomedical applications //BioMed research international. 2016. T. 2016. doi.org/10.1155/2016/8175701
40.
Kweon H. Y. et al. Determination of heavy metals and residual agricultural chemicals in Bombyx mori silkworm cocoon //Journal of Sericultural and Entomological Science. 2012. T. 50. . 2. S. 48-52. doi.org/10.7852/jses.2012.50.2.48
41.
Latshaw J. D., Bishop B. L. Estimating body weight and body composition of chickens by using noninvasive measurements //Poultry science. 2001. T. 80. . 7. S. 868-873. doi.org/10.1093/ps/80.7.868
42.
Lee H. J. et al. Novel tripeptides with α-glucosidase inhibitory activity isolated from silk cocoon hydrolysate //Journal of agricultural and food chemistry. 2011. T. 59. . 21. S. 11522-11525. doi: 10.1021/jf202686m
43.
Lee H. S., Lee H. J., Suh H. J. Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast //Nutrition research. 2011. T. 31. . 12. S. 937-943. doi.org/10.1016/j.nutres.2011.09.009
44.
Lee Y. W. Silk reeling and testing manual. Food & Agriculture Org., 1999. . 136. ISBN 92-5-104293-4
45.
McLeod S. M., Dougherty T. J., Pucci M. J. Novel antibacterial targets/identification of new targets by comparative genomics //Antibiotic Discovery and Development. Springer, Boston, MA, 2012. S. 881-900. doi: 10.1007/978-1-4614-1400-1
46.
Mondal M. et al. SeriNutrid-A Balanced Nutrient Diet for Silkworm (Bombyx mori L) Chawki Rearing // International Journal of Advance Research, Ideas And Innovations In Technology. ‒ 2018. ‒ T. 4. 2. C. 4247.
47.
Nair J. S. et al. Development of bivoltin pure strain of silkworm, Bombyx mori L to rear exclusively on artificial diet during young instar //J Biol Sci. 2011. T. 11. . 6. S. 423-427. doi: 10.3923/jbs.2011.423.427
48.
Ohura M. Development of an automated warehouse type silkworm rearing system for the production of useful materials //Journal of Insect Biotechnology and Sericology. 2003. T. 72. . 3. S. 163-169.
49.
Ohura M., Li M. Z. Automatic artificial diet feeding system for rearing Silkworm, Bombyx mori //Journal of Insect Biotechnology and Sericology. 2001. T. 70. . 1. S. 59-62.
50.
Oonincx D. G. A. B. et al. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products //PLoS One. 2015. T. 10. . 12. S. e0144601. doi.org/10.1371/journal.pone.0144601
51.
Park D. S. et al. Improving effect of silk peptides on the cognitive function of rats with aging brain facilitated by D-galactose //Biomolecules & Therapeutics. 2011. T. 19. . 2. S. 224-230. doi:10.4062/biomolther.2011.19.2.224
52.
Patil S. R. et al. Utilization of silkworm litter and pupal waste-an eco-friendly approach for mass production of Bacillus thuringiensis //Bioresource technology. 2013. T. 131. S. 545-547. doi.org/10.1016/j.biortech.2012.12.153
53.
Qadri F. Possibilities for utilization of waste products of Sericultural industry in animal/ poultry feeds // International journal of advanced biological research ‒ 2015. ‒ 5(4). C. 363365.
54.
Rahmatholla V. K. et al. Food ingestion, assimilation and conversion efficiency of mulberry silkworm, Bombyx mori L //International Journal of Industrial Entomology. 2005. T. 11. . 1. S. 1-12. doi.org/10.1155/2012/121234
55.
Ramesha C. et al. Nutrigenetic screening strains of the mulberry silkworm, Bombyx mori, for nutritional efficiency //Journal of insect science. 2012. T. 12. . 1. doi: 10.1673/031.012.1501
56.
Ryu J. M. et al. Effect of repeated administration of silk peptide on the immune system of rats //Laboratory Animal Research. 2008. T. 24. . 3. S. 361-369.
57.
Saviane A. et al. Rearing of monovoltine strains of Bombyx mori by alternating artificial diet and mulberry leaf accelerates selection for higher food conversion efficiency and silk productivity //Bulletin of Insectology. 2014. T. 67. . 2. S. 167-174.
58.
Seber L. E. et al. Scalable purification and characterization of the anticancer lunasin peptide from soybean //PloS one. 2012. T. 7. . 4. S. e35409. doi.org/10.1371/journal.pone.0035409
59.
Shin M. J. et al. Effects of silk protein hydrolysates on blood glucose in C57BL/KsJ db/db mice //Journal of the Korean Society of Food Science and Nutrition. 2006. T. 35. . 9. S. 1166-1171. doi: 10.3746/jkfn.2006.35.9.1166
60.
Shin S. et al. Silk amino acids improve physical stamina and male reproductive function of mice //Biological and Pharmaceutical Bulletin. 2010. T. 33. . 2. S. 273-278. doi.org/10.1248/bpb.33.273
61.
Shin S. et al. Stamina-enhancing effects of silk amino acid preparations in mice //Laboratory Animal Research. 2009. T. 25. . 2. S. 127-134.
62.
Shinbo H., Yanagawa H. Low-cost artificial diets for polyphagous silkworms [Bombyx mori] //JARQ (Japan). 1994.Sluik D. et al. Evaluation of a nutrient-rich food index score in the Netherlands //Journal of nutritional science. 2015. T. 4. doi: 10.1017/jns.2015.4
63.
Sluik D. et al., Evaluation of a nutrient-rich food index score in the Netherlands // Journal of Nutritional Science. ‒ 2015. ‒ T. 4
64.
Smil V. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins //Enzyme and Microbial Technology. 2002. T. 30. . 3. S. 305-311.
65.
Srinivas V. et al. Evaluation of Nutritional Composition of Hybrids of Waste Silkworm Pupa Bombyx Mori L As A Potential Raw Material For Poultry Feed-A Sustainable Technology For Future // International Journal of Engineering Research & Technology. ‒ 2012. ‒ T. 1. 10.
66.
Strakova E. et al. Levels of nitrogenous substances and amino acids in bodies of Ross 308 hybrid cocks and hens over the course of rearing //Veterinarni Medicina. 2015. T. 60. . 9. doi: 10.17221/7976-CJAS
67.
Sumida M., Sutthikhum V. Fibroin and sericin-derived bioactive peptides and hydrolysates as alternative sources of food additive for promotion of human health: a review //Research and Knowledge. 2015. T. 1. S. 1-17. doi: 10, 14456 / randk.2015.16.
68.
Szécsi G. et al. Production of Hypoallergenic Antibacterial Peptides from Defatted Soybean Meal in Membrane Bioreactor: A Bioprocess Engineering Study with Comprehensive Product Characterization //Food technology and biotechnology. 2017. T. 55. . 3. S. 308-324. doi.org/10.17113/ftb.55.03.17.5040
69.
Tomotake H., Katagiri M., Yamato M. Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid //Journal of nutritional science and vitaminology. 2010. T. 56. . 6. S. 446-448. doi.org/10.3177/jnsv.56.446
70.
Tzenov P. et.al. Identification and possible utilization of some silkworm rearing waste products // Institute of Bioengineering, Biotechnology and Environmental Protection S.C. BIOING S.A.-Bucharest, 2008. S. 42-48. URL: https://www.bacsa silk.org/user_pic/international.pdf
71.
Vaithanomsat P., Punyasawon C. Production of water-soluble silk powder from Bombyx mori Linn. (Nang-Noi Srisakate 1) //Kasetsart J. (Nat. Sci.). 2006. T. 40. S. 152-8.
72.
Van Huis A. et al. Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations, 2013. . 171. S. 187. ISBN 978-92-5-107595-1
73.
Vu C. C. et al. The nutritive value of mulberry leaves (Morus alba) and partial replacement of cotton seed in rations on the performance of growing Vietnamese cattle //Asian-Australasian Journal of Animal Sciences. 2011. T. 24. . 9. S. 1233-1242. doi.org/10.5713/ajas.2011.90328
74.
Waldbauer G. P. The consumption and utilization of food by insects //Advances in insect physiology. Academic Press, 1968. T. 5. S. 229-288. doi.org/10.1016/S0065-2806(08)60230-1
75.
Wang H. Y. et al. Isolation and bioactivities of a non-sericin component from cocoon shell silk sericin of the silkworm Bombyx mori //Food & function. 2012. T. 3. . 2. S. 150-158. doi: 10.1039/c1fo10148j
76.
Wang W. et al. Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides (ACEIP) //Current Pharmaceutical Biotechnology. 2008. T. 9. . 4. S. 307-314. doi: 10.2174/138920108785161578
77.
Wang W. et al. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme //European Food Research and Technology. 2011. T. 232. . 1. S. 29-38. doi: 10.1007/s00217-010-1358-8
78.
Wei-Zheng C., Shu-min J., Fa-yu L. Studies on pellet artificial diet rearing young silkworms of euryphagous cross combination // Shandong Nongye Daxue Xue Bao. ‒ 2005. ‒ T. 1.
79.
Wenk E., Merkle H. P., Meinel L. Silk fibroin as a vehicle for drug delivery applications //Journal of Controlled Release. 2011. T. 150. . 2. S. 128-141. doi: 10.1016/j.jconrel.2010.11.007
80.
Yellamma K. et al. Silk Protein, Sericin as a Cognitive Enhancer in Alzheimers Disease //J Alzheimers Dis Parkinsonism. 2014. T. 4. . 163. S. 2161-0460.1000163. doi: 10.4172/2161-0460.1000163
81.
Zubrzycki I. Z. et al. Supplementation with Silk Amino Acids improves physiological parameters defining stamina in elite fin-swimmers //Journal of the International Society of Sports Nutrition. 2014. T. 11. . 1. S. 57. doi: 10.1186/s12970-014-0057-4
82.
Artyukhov A. I. Preodolenie prepyatstvii pri ispol'zovanii lyupina v kormlenii zhivotnykh i ptitsy //Kormoproizvodstvo. 2012. . 5. S. 49-52.
83.
Biogenezis-Korm iz nasekomykh. URL: https://bio-genesis.ru/ (data obrashcheniya: 20.05.2019).
84.
Burlakov V. S. Povyshenie effektivnosti shelkovodstva na baze novykh tekhnologii s ispol'zovaniem razrabotannykh tekhnicheskikh sredstv: Dis. d-ra s.-kh. nauk: 06.02.04 Belgorod, 2005.-275 s.
85.
Byulleteni o sostoyanii sel'skogo khozyaistva (elektronnye versii), Katalog publikatsii: Federal'naya sluzhba gosudarstvennoi statistiki. ‒ 2019.
86.
GOST 21060-87: Kokony tutovogo shelkopryada vozdushno-sukhie. Tekhnicheskie usloviya. 1987-01-05. M. Izd-vo standartov, 1987. 14 s.
87.
GOST 8493-57: Kokony tutovogo shelkopryada vozdushno-sukhie. Tekhnicheskie usloviya. 1957-20-06. M. Izd-vo standartov, 1957. 10 s.
88.
Domoroshchenkova M. L., Khaies D., Shushkevich A. Yu. Strukturnaya modifikatsiya belkov soi kak perspektivnaya bio-i nanotekhnologiya // Vestnik Vserossiiskogo nauchno-issledovatel'skogo instituta zhirov. ‒ 2014. ‒ 2. C. 3035.
89.
Zinchenko D. V., Muranova T. A., Melan'ina L. A., Belova N. A., Miroshnikov, A. I. Gidroliz belkov soi i rapsa fermentativnym preparatom protosubtilin //Prikladnaya biokhimiya i mikrobiologiya. 2018. T. 54. . 3. S. 277-285. doi.org/10.1371/journal.pone.0035409
90.
Zlepkin A. F., Zlepkin D. A., Mishurova M. N. Balans i ispol'zovanie azota, kal'tsiya i fosfora u tsyplyat-broilerov pri ispol'zovanii v kombikormakh razlichnykh vidov rastitel'nogo masla //Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie. 2013. . 4 (32). S. 14.
91.
Zorin S. N. i dr. Tekhnologiya polucheniya peptidnogo modulya na osnove gidrolizata belka soi //Pishchevaya promyshlennost'. 2017. . 10.
92.
Zyablintseva M.A., Produktivnost' tsyplyat-broilerov pri ispol'zovanii mikrobiologicheskikh preparatov "Urga" i "Baikal EM-1", dis. Zyablintseva M.A., Yuzhno-Ural'skii gosudarstvennyi agrarnyi universitet. Troitsk, 2018. 153 c.
93.
Kosolapov V. M., Voronkova F. V. Kolichestvennaya i kachestvennaya kharakteristiki syrogo proteina kormovykh rastenii, kormov i biologicheskogo materiala zhivotnykh i ptitsy. Moskva, 2014. 161 c.
94.
Kosse A. G. Produktivnost' tsyplyat-broilerov pri ispol'zovanii razlichnykh laktulozosoderzhashchikh dobavok: dis. A.G. Kosse.-Persianovskii, 2014. 23 s, 2014. 41
95.
Leinveber E. F. Poluchenie poliploidnykh sortov kormovoi shelkovitsy i ikh ispol'zovanie v raznosezonnykh vykormkakh tutovogo shelkopryada: dis. Stavropol'skii gosudarstvennyi agrarnyi universitet, 2011. URL: http://earthpapers.net/poluchenie-poliploidnyh-sortov-kormovoy
96.
Leinveber E. F., Shaposhnikova K. S., Selionova M. I. Produktivnost' tutovogo shelkopryada v raznye sezony vykormok pri ispol'zovanii lista razlichnoi ploidnosti //Sbornik nauchnykh trudov Vserossiiskogo nauchno-issledovatel'skogo instituta zhivotnovodstva i kormoproizvodstva. 2012. T. 3. . 1-1 . 109-111.
97.
Matrosova Yu. V. Vliyanie sorbentov na khozyaistvennye pokazateli broilerov //Voprosy normativno-pravovogo regulirovaniya v veterinarii. 2015. . 2. S. 309-312.
98.
Miralimov Yu. i dr., Sposob obrezki shelkovitsy. ‒ 23.11.81. URL: http://www.findpatent.ru/patent/89/891040.html (data obrashcheniya: 19.12.2018).
99.
Miralimov Yu. Usmanov B., Sposob vyrashchivaniya shelkovitsy na korm gusenitsam shelkopryada. ‒ 1982. URL: http://www.findpatent.ru/patent/89/897192.html (data obrashcheniya: 19.12.2018).
100.
Mikhailov E. N. Shelkovodstvo //M.: Gosizdat sel'skokhozyaistvennoi literatury. 1950.
101.
Nozdrin A. E. Vliyanie razlichnykh sposobov vyrashchivaniya tsyplyat-broilerov na myasnuyu produktivnost': dis. Belgorod, 2015.
102.
Ovchinnikov A. A., Magokyan V. Sh. Formirovanie myasnoi produktivnosti tsyplyat-broilerov pri ispol'zovanii v ratsione probiotika i sorbenta //Uchenye zapiski Kazanskoi gosudarstvennoi akademii veterinarnoi meditsiny im. NE Baumana. 2011. T. 208. . 4.
103.
Pasichnii V. M., Problema belka ili problema kachestva pishchi. ‒ 2004.
104.
Pitatel'naya sreda dlya vyrashchivaniya gusenits tutovogo shelkopryada. ‒ 2013. URL: https://findpatent.ru/patent/154/1546032.html (data obrashcheniya: 20.05.2019).
105.
Podryv tysyacheletnei modeli shelkovodstva Cangzhou zapuskaet v proizvodstvo pervuyu v mire fabriku shelkovodstva. URL: https://zj.zjol.com.cn/news/1122068.html (data obrashcheniya: 07.05.2019).
106.
Privalo K. I., Pashkova M. I., Zheleznyak O. Yu. Metody opredeleniya biokonversii energii korma v produktsiyu zhivotnovodstva // Problemy razvitiya agrarnogo sektora regiona. 2006. S. 205-207. ISBN 5-7369-0486-1
107.
Rusakova E. A. Vliyanie fitazy na obmen energii i azota v organizme tsyplyat-broilerov //Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2015. . 5 (55).
108.
Selektsionnaya rabota-GNU RNIS Shelkovodstva. ‒ 2008. URL: https://russilk.ucoz.ru/index/0-9 (data obrashcheniya: 20.05.2019).
109.
Sergeevskaya I. A. Produktivnost' tsyplyat-broilerov dvukh-, trekh-i chetyrekhlineinykh krossov pri dvukh-i trekhfazovom kormlenii: dis.-Moskva, 2009. 23 c.
110.
Smagina A. V., Sytova M. V. Analiz ispol'zovaniya soevogo belka v pishchevoi promyshlennosti //Nauchnye trudy Dal'rybvtuza. 2011. T. 23.
111.
Snitsar' A. I., Ivashov V. I., Dudin M. V. Spravochnik mastera tsekha tekhnicheskikh fabrikatov //Myasnaya Industriya. 1996.
112.
FGUP USZ, Strategiya razvitiya-Minsel'khoz Rossii. URL: http://old.mcx.ru/documents/document/v7_show/6550.191.htm (data obrashcheniya: 20.05.2019).
113.
Furman Yu. V., Barymova O. P. Ispol'zovanie belkovykh kormovykh dobavok v ratsionakh tsyplyat broilerov //Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii. 2010. T. 3. . 3.
114.
Kharitonova D., Mertvym gruzom. URL: http://agro profi.ru/2014/09/11/mertvym-gruzom/ (data obrashcheniya: 03.02.2017).
115.
Yas'kova E. V. i dr., Effektivnost' sovremennykh tekhnologii vyrashchivaniya tsyplyat-broilerov // Biologiya v sel'skom khozyaistve. ‒ 2015. ‒ T. 7. . 2. C. 4758.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website