Статья 'Нейросетевая модель прогнозирования уровня глюкозы в крови у больных сахарным диабетом' - журнал 'Кибернетика и программирование' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Policy of publication. Aims & Scope. > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming
Reference:

Neural Network Model for Diabetes Patients Blood Glucose Prediction

Mustafaev Arslan Gasanovich

Doctor of Technical Science

Professor of the Department "Information technologies and information security" of the Dagestan State University of National Economy

367015, Russia, respublika Dagestan, g. Makhachkala, ul. Ataeva, 5, kab. 4.5

arslan_mustafaev@hotmail.com
Другие публикации этого автора
 

 

DOI:

10.7256/2306-4196.2016.3.18010

Review date:

15-02-2016


Publish date:

25-06-2016


Abstract: Diabetus melitus is a metabolic disorder caused by an absolute deficiency of insulin secretion and characterized by the inability of the body to maintain an adequate blood glucose level. Optimal doses and types of artificial insulin depend on many factors. In this paper the author proposes a neural network model of blood glucose prediction allowing to predict impending critical condition of patients suffering from diabetes. Implementation of the prediction system combined with an insulin pump creates a range of opportunitities for constructing a system of automatic blood glucose level control. The simulation was performed by using The Neural Network Toolbox of the Matlab 2015b environment due to a wide range of opportunities offered by the system, convenience of developing compex applications, advanced imaging study results. The results of the training process and verification of the proposed prediction model performance show that artificial neural networks of direct distribution can help to sustain a satisfactory blood glucose level at all stages of prediction. The average quadratic prediction error did not exceed 3 in the process of the research.  


Keywords: continuous glucose monitoring, supervised learning, feedforward network, data classification, predicting, back propagation of error, multilayer perceptron, artificial neural network, glucose level, diabetes mellitus
This article written in Russian. You can find full text of article in Russian here .

References
1.
Fadeev P. A. Sakharnyi diabet. M.: Oniks, 2011, s.208.
2.
Kanales Kh. S. Virtuoznaya insulinoterapiya. M.: ANBO «Rossiiskaya diabeticheskaya gazeta», 2002, s. 209.
3.
Pappada S.M., Cameron B.D., Rosman P.M. Development of a Neural Network for Prediction of Glucose Concentration in Type 1 Diabetes Patients. Journal of Diabetes Science and Technology, 2008, №2(5), pp.792-801.
4.
Endokrinologiya. Natsional'noe rukovodstvo. Kratkoe izdanie. Pod red. Dedova I.I., Mel'nichenko G.A.GEOTAR-Media, 2016, s.752.
5.
Aravin O.I. Primenenie iskusstvennykh neironnykh setei dlya analiza patologii v krovenosnykh sosudakh. Rossiiskii zhurnal biomekhaniki. - 2011. - T.5, №3 (53). S. 34.
6.
Mustafaev A.G. Primenenie iskusstvennykh neironnykh setei dlya rannei diagnostiki zabolevaniya sakharnym diabetom // Kibernetika i programmirovanie. DOI: 10.7256/2306-4196.0.0.17904. URL: http://e-notabene.ru/kp/article_17904.html
7.
Andreassen S., Benn. J., Hovorka R., Olesen K. G., Carson E. R. A probabilistic approach to glucose prediction and insulin dose adjustment: Description of metabolic model and pilot evaluation study. Computer Methods and Programs in Biomedicine, vol. 41, pp. 153–165, 1994.
8.
Bremer T., Gough D.A. Is blood glucose predictable from previous values? A solicitation for data. Diabetes, vol. 48, pp. 445–451,1999.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website