ïî
Arctic and Antarctica
12+
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Article Processing Charge > Article Identification Policy > Plagiarism check policy > Editorial Board > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Back to contents
Publications of Ginzburg Alexander Pavlovich
Arctic and Antarctica, 2023-2
Vasil'chuk Y.K., Ginzburg A.P. - Radial differentiation of chemical composition of cryogenic soils in the Chara river valley, north of Transbaikalia pp. 115-128

DOI:
10.7256/2453-8922.2023.2.40965

Abstract: The subject of the study is the content of iron compounds and their radial differentiation in the profiles of cryogenic soils of the Chara River valley (Transbaikalia). The studied soils belong to post-pyrogenic permafrost gleyzems, the depths of the seasonal active‐layer of these soils are from 34 to 44 cm. Macronutrient concentrations, with the exception of Si, rarely exceed 5.0%, while the silicon content reaches 24.3%. Si is also characterized by removal from the upper part of soil profiles and accumulation in permafrost soil horizons. The highest concentrations are characteristic in the O horizons (Mg – 4.8 and Ca – 1.5 mg/kg) for a significant part of the macroelements. The trace elements, Sr and Zr are distributed vary contrastingly (from 5.0 to 29.7 and from 5.6 to 47.1 mg/kg). Values of the R coefficient from 0.3 to 0.9 indicate the initial stage of post-pyrogenic restoration of soil properties, and the active accumulation of Mg, Ca, Ti, Fe, Sr, and other elements in the upper part of oxidized-gley permafrost gleyzem observed in the profile is a sign of active restoration. The soils contain about 3.4% iron, which more than 60–75% is the silicate group of compounds (Feñ). The moisture content of soils and the prevailing reducing environmental conditions contribute to the formation of monotonous distributions in their profiles, and in soils without signs of stable hydromorphism, permafrost horizons contain almost 2 times more Feox and Feextr.
Arctic and Antarctica, 2020-3
Vasil'chuk Y.K., Belik A.D., Vasil'chuk A.C., Budantseva N.A., Vasil'chuk J.Y., Ginzburg A.P., Bludushkina L.B. - Variations of the composition of PAHs and the ratio of carbon and nitrogen in the soils of Batagaika thermoerosive carter in Northern Yakutia pp. 100-114

DOI:
10.7256/2453-8922.2020.3.33583

Abstract: Polycyclic aromatic hydrocarbons (PAHs) are the ubiquitous organic pollutants. They are formed as a result of incomplete oxidation of organic substance, for example, technogenic fuel combustion, heating system, wildfires, volcanism, and decomposition of organic residues. Special attention is given to pyrogenic factor of the formation of PAHs in soils. The subject of this research is PAHs in the soils of Batagaika thermoerosive carter in Northern Yakutia in Verkhoyansky Ulus in Yakutia. The author examines the peculiarities of two soil sections (indices B-VG-2019/1 and B-VG-2019/3). Both soils are post-pyrogenic and contain visible traces of a recent fire: embers are found in subsurface horizons of the examined sections, which indicate the recent fire. The following conclusion were formulated: 1) in soils, dicyclic PAHs account for 93%, while the proportions of tricyclic and tetracyclic compounds are roughly equivalent (4% and 3%, respectively); 2) the average values of individual PAHs in the upper (up to 30 cm) and lower (deeper than 30 cm) horizons differ. In the upper horizons, their total concentration is 27 ng/g, while in the lower horizons it is 14 ng/g; 3) in this case, the key biomarker of fires is naphthalene and its homologues. The absence of PAHs with considerable molecular weight most likely testifies to the relatively low fire intensity. The highest values of C/N ratio are noted in the bedding horizon: 10.89 and 3.31, and the lower soils are characterized with approximately 1, which is substantiated by the low content of carbon and nitrogen in the soil profile.
Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.