ïî
Arctic and Antarctica
12+
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Article Processing Charge > Article Identification Policy > Plagiarism check policy > Editorial Board > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Back to contents
Publications of Budantseva Nadine Arkad'evna
Arctic and Antarctica, 2022-3
Vasil'chuk Y.K., Ginzburg A.P., Budantseva N.A., Vasil'chuk J.Y. - Cryogenic Soils in the Chara River Valley (Transbaikalia) pp. 54-91

DOI:
10.7256/2453-8922.2022.3.38689

Abstract: The object of the study are the cryogenic soils located within the Chara valley. We attributed soils in a post-pyrogenic sparse larch forest on the terrace of the Chara River, to the type of gleyzems (Gleysols), subtypes - permafrost cryogenically ferruginized cryoturbated and permafrost cryogenically ferruginized post-pyrogenic. The field diagnostics of these two soils is ambiguous, since the soil profiles contain some morphological features that make it possible to identify them as podburs (Entic Podzols): a bright red color of the BF horizon, a sandy loam texture, containing less than 19% of clay particles (< 10 µm). Field diagnostics, together with laboratory studies, indicate that the soils in the section on the stone run at the top of the Udokan Ridge belongs to peat-lithozem (Histic Leptosols). Chemical analyses have shown that the described soils are acidic with pH ranges from 4.9 to 5.4 and relatively slightly saline, TDS ranges from 8.1 to 18.9 mg/L. The carbonate alkalinity is also relatively low: 2.4–4.8 mmol(-)/100 g of soil. The sections are strongly differentiated by the content of organic carbon. Permafrost peat-lithozem contains from 9.3 to 37.8%, permafrost cryogenically ferruginized post-pyrogenic gleyzem is much less enriched in it, the content here does not exceed 6.8%, usually being around 0.9%.
Arctic and Antarctica, 2022-1
Vasil'chuk Y.K., Budantseva N.A., Ginzburg A.P., Vasil'chuk A.C. - Stable oxygen and hydrogen isotope ratios of the aufeis of the Viluy River valley pp. 1-39

DOI:
10.7256/2453-8922.2022.1.37931

Abstract: The object of the study is the isotope composition of three aufeis (icing) in the Viluy River basin. Two of the three tested icing were located in the wide valleys of the streams-tributaries of the Viluy River, one on the flat bottom of the thermosuffusion sinkholes. The areas of studied icings did not exceed 30 sq. m., their thickness ranges from 45 to 100 cm. Stratification is recorded in the icings. The co-isotope diagram δ2H-δ18O shows that icing ice was formed from spring water and generally is isotopically “lighter” compared to the water of Kysyl-Yurekh stream and Viluy River. The isotope composition of the icing ice varies in a very narrow range: a) for icing 1 δ18O values vary from –19.3 to –20.9‰, δ2H values vary from –156.5 to –162.9‰; b) for icing 2 δ18O values vary from –19.7 to –22.4‰, δ2H values vary from –153.2 to –173.1‰; c) for icing 3 δ18O values vary from –19.8 to –22.7‰, δ2H values vary from –162.9 to –181.3‰. The similarity of the isotope profiles of icing 2 on Viluy and icing IB93-5 on Baylot Island and isotope profiles of icing 3 on Viluy and icing F192-6 on Baylot Island was noted, however, the scale of isotopic variations for icings on Baylot Island are 5-6 times greater than that of Viluy icings.
Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.