Статья 'Разработка графической оболочки для параллельных расчетов на базе платформы OpenFOAM ' - журнал 'Кибернетика и программирование' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Policy of publication. Aims & Scope. > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming
Reference:

Development of a graphical shell for parallel calculations based on the OpenFOAM platform

Chitalov Dmitrii Ivanovich

Junior Researcher, South Ural Scientific Center

456317, Russia, Chelyabinskaya oblast', g. Miass, ul. Pr. Oktyabrya, 31, kv. 44

cdi9@yandex.ru
Kalashnikov Sergei Timofeevich

PhD in Technical Science

Head Department of Fundamental Problems of Aerospace Technologies, South Ural Scientific Center

456317, Russia, Chelyabinskaya oblast', g. Miass, ul. Il'menskii Zapovednik, 1

src@makeyev.ru

DOI:

10.25136/2644-5522.2019.4.29202

Review date:

11-03-2019


Publish date:

15-12-2019


Abstract: Graphical interfaces are an essential element of human-computer interaction. They provide the formation of input data for programs and visualization of results. Commercial software predominantly comes with integrated graphical communication tools. At the same time, some open-source software solutions, in particular, the OpenFOAM platform, have no built-in interaction tools. This problem remains relevant because existing graphical interfaces have disadvantages. This paper presents a phased process for developing a graphical shell for implementing user interaction with the OpenFOAM platform - for setting up numerical experiments in relation to the tasks of continuum mechanics (MSS) in parallel execution mode. To achieve this goal, a list of tasks and necessary tools is defined: the Python 3.5 programming language, the PyQt5 interface element description framework, and the PyCharm integrated development environment. The diagrams showing the interconnection of the program modules and the mechanism of the program. The results of the development and testing of the application are formulated using the example of a project of one of the standard tasks of the MSS included in the distribution platform platform OpenFOAM. The scientific novelty of the study is formulated, in particular: serialization of the parameters of a numerical experiment using the Python Pickle module and database tables in SQLite format, the ability to create various versions of files with MCC task parameters, the ability to run console commands using bash scripts. The practical value of the work and further prospects are also determined.


Keywords: graphical user interface, open source software, OpenFOAM, parallel computing, continuum mechanics, numerical simulation, Python programming language, PyQt library, SQLite DBMS, bash-scripting
This article written in Russian. You can find full text of article in Russian here .

References
1.
Operating System Interface Design Between 1981-2009 URL: https://www.webdesignerdepot.com/2009/03/operating-system-interface-design-between-1981-2009/ (data obrashcheniya: 25.01.2019).
2.
OpenFOAM. The open source CFD toolbox. URL: https://www.openfoam.com/ (data obrashcheniya: 25.01.2019).
3.
Etrati, A., & Frigaard, I. A. (2018). Viscosity effects in density-stable miscible displacement flows: Experiments and simulations. Physics of Fluids, 30(12) doi:10.1063/1.5065388.
4.
Salome. The Open Source Integration Platform for Numerical Simulation. URL: http://www.salome-platform.org (data obrashcheniya: 25.01.2019).
5.
Visual-CFD for OpenFOAM. URL: https://www.esi-group.com/software-solutions/virtual-environment/cfd-multiphysics/visual-cfd-openfoam (data obrashcheniya: 25.01.2019).
6.
HELYX-OS. The market leading open-source GUI for OpenFOAM. URL: http://engys.com/products/helyx-os (data obrashcheniya: 25.01.2019).
7.
Chitalov D.I., Merkulov E.S., Kalashnikov S.T. Razrabotka graficheskogo interfeisa pol'zovatelya dlya programmnogo kompleksa OpenFOAM. Programmnaya inzheneriya, vyp. 12, 2016 g., str. 568-574. DOI: 10.17587/prin.7.568-574. doi: 10.17586/prin.7.568-574.
8.
OpenFOAM. User Guide. URL: http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf (data obrashcheniya: 25.01.2019).
9.
OpenFOAM. Tutorial Guide. URL: https://www.openfoam.com/ documentation/tutorial-guide/index.php (data obrashcheniya: 25.01.2019).
10.
Galindo-Lopez, S., Salehi, F., Cleary, M. J., Masri, A. R., Neuber, G., Stein, O. T. (2018). A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion. Computers and Fluids, 172, 410-425. doi:10.1016/j.compfluid.2018.03.083.
11.
Kyriazis, N., Koukouvinis, P., & Gavaises, M. (2018). Modelling cavitation during drop impact on solid surfaces. Advances in Colloid and Interface Science, 260, 46-64. doi:10.1016/j.cis.2018.08.004.
12.
H. Al-Jelawy, S. Kaczmarczyk, D. AlKhafaji, S. Mirhadizadeh, R. Lewis and M. Cross, "A Computational Investigation of a Turbulent Flow over a Backward Facing Step with OpenFOAM," 2016 9th International Conference on Developments in eSystems Engineering (DeSE), Liverpool, 2016, pp. 301-307. doi: 10.1109/DeSE.2016.47.
13.
Mohseni, M., Esperanca, P. T., & Sphaier, S. H. (2018). Numerical study of wave run-up on a fixed and vertical surface-piercing cylinder subjected to regular, non-breaking waves using OpenFOAM. Applied Ocean Research, 79, 228-252. doi:10.1016/j.apor.2018.08.003.
14.
Chitalov D.I., Kalashnikov S.T. Razrabotka prilozheniya dlya podgotovki raschetnykh setok s graduiruyushchimi i izognutymi krayami dlya programmnoi sredy OpenFOAM. Sistemy i sredstva informatiki. 2018. T. 28. №4. str. 122-135. doi: 10.14357/08696527180412.
15.
Chitalov D.I., Kalashnikov S.T. Razrabotka prilozheniya dlya podgotovki raschetnykh setok posredstvom utility snappyHexMesh programmnoi sredy OpenFOAM. Programmnye produkty i sistemy. 2018. T. 31. № 4. str. 715-722. doi: 10.15827/0236-235X.124.715-722.
16.
TIOBE index for January 2019. URL: https://www.tiobe.com/tiobe-index/ (data obrashcheniya: 25.01.2019).
17.
Python 3.5 documentation. URL: https://docs.python.org/3.5/ (data obrashcheniya: 25.01.2019).
18.
PyQt5 Reference Guide. URL: http://pyqt.sourceforge.net/Docs/PyQt5/ (data obrashcheniya: 25.01.2019).
19.
ParaView. URL: https://www.paraview.org/ (data obrashcheniya: 25.01.2019).
20.
OpenFOAM_decompose_GUI. Available at: https://github.com/DmitryChitalov/OpenFOAM_decompose_GUI (data obrashcheniya: 25.01.2019).
21.
Advanced bash-scripting guide. URL: https://www.tldp.org/LDP/abs/html/ (data obrashcheniya: 25.01.2019).
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website