Статья 'Разработка декодеров искусственной иммунной системы, восприимчивых к нечетким командам' - журнал 'Кибернетика и программирование' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Policy of publication. Aims & Scope. > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming
Reference:

Development of receptive to fuzzy commands decoders for artificial immune system

Chernyshev Yurii Olegovich

Doctor of Technical Science

Professor, Department of Automation of Production Processes, Don State Technical University

344000, Russia, Rostovskaya oblast', g. Rostov-na-Donu, ploshchad' Gagarina, 1

myvnn@list.ru
Другие публикации этого автора
 

 
Ventsov Nikolai Nikolaevich

PhD in Technical Science

Associate Professor, Department of Information Technology, Don State Technical University

344000, Russia, Rostovskaya oblast', g. Rostov-na-Donu, ploshchad' Gagarina, 1

vencov@list.ru
Другие публикации этого автора
 

 

DOI:

10.7256/2306-4196.2016.5.19885

Review date:

28-07-2016


Publish date:

29-01-2017


Abstract: The object of research is the model of artificial immune system. Subject of the research is providing a method of constructing a fuzzy decoder. The authors proposed to use fuzzy membership function as the decoders. This functions describes the relevance of a controlled parameter to a critical situation. Using such an approach based on fuzzy decoders allows to move from binary quantitative classification to fuzzy qualitative estimates. The article present an example o f construction of a decoder for fuzzy term “semiperimeter length of L, describing a fragment of the designed product, should be no more than 0.7 nm”. On the basis of the function CON(μ1(L)), describing fuzzy matching condition “very close to 0.7 nm” the authors build a function μ5(L), describing fuzzy matching condition “a little less than 0.7 nm”. Fuzzy decoder for conformity assessment interval is based on the given interval membership function. The authors give a graph of a μ7 decoder  function semiperimeter on the length L, describing the belonging to “semiperimeter desired length from 0.55 to 0.7 nm” condition. By analogy with the conditions “very close to 0.7 nm” and “slightly close to 0.7 nm” it is possible to determine a membership functions “very in range from 0.55 to 0.7 nm” and “slightly in range from 0.55 to 0.7 nm”. The research method is based on the construction of fuzzy decoders describing the undesirable state of the computational process. Fuzziness is described by the membership function. The novelty of the research is in getting fuzzy decoders receptive to fuzzy commands. Using the corresponding fuzzy membership function μ decoder it is possible adjust the process of estimating the degree of closeness of the controlled parameter to a critical situation. Applying CON and DIL functions to the decoder functions allows to change their susceptibility on test data from 20-30% up to 200% -300%.


Keywords: decision making , fuzzy approach, membership function, adaptation, expert systems, semiperimeter, fuzzy condition, decoder, adverse selection, artificial immune system
This article written in Russian. You can find full text of article in Russian here .

References
1.
Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. Primenenie logik Lukasevicha i Zade pri realizatsii metoda otritsatel'nogo otbora // Izvestiya YuFU. Tekhnicheskie nauki. 2013. № 7 (144). S. 91-97.
2.
Iskusstvennye immunnye sistemy i ikh primenenie /Pod red. D. Dasgupty. Per. s angl. pod red A.A. Romanyukhi. — M.: FIZMATLIT, 2006. — 344 s.-ISBN 5-9221-0706-2.
3.
D. Dasgupta, S. Forrest. Novelty Detection in Time Series Data using Ideas from Immunology. Fifth International Conference on Intelligent Systems. Reno, Nevada: June, 1996.
4.
Chernyshev Yu.O., Grigor'ev G.V., Ventsov N.N. Iskusstvennye immunnye sistemy: obzor i sovremennoe sostoyanie// Programmnye produkty i sistemy. 2014. № 108. S. 136-142.
5.
Zolotarev A.A. Metody optimizatsii raspredelitel'nykh protsessov. M.: Izdatel'stvo «Infra-Inzheneriya», 2014. 160 s.
6.
Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. K voprosu ob intellektual'noi podderzhke protsessa dovodki SBIS // Izvestiya YuFU. Tekhnicheskie nauki. 2012. № 7 (132). S. 63-69.
7.
Chernyshev Yu.O., Ventsov N.N., Mukhtarov S.A. Razrabotka algoritma intellektual'noi podderzhki uluchsheniya promezhutochnykh reshenii optimizatsionnykh zadach // Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta. 2012. T. 12. № 5 (66). S. 68-76.
8.
Zade L.A. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii. –M.: Mir, 1976.–165 s.
9.
Chernyshev Yu.O., Ventsov N.N., Panasenko P.A. Algoritm prinyatiya proektnykh reshenii na osnove nechetkikh komand //Izvestiya YuFU. Tekhnicheskie nauki. 2014. №7(156). S. 126-134.
10.
Malyshev N.G., Bershtein L.S., Bozhenyuk A.V. Nechetkie modeli dlya ekspertnykh sistem v SAPR. –M.: Energoatomizdat, 1991.–136 s.
11.
Zade L.A. Fuzzy sets// Information and Control.–1965.–Vol. 8.–P. 338.
12.
Korobeinikov A.G., Fedosovskii M.E., Aleksanin S.A. Razrabotka avtomatizirovannoi protsedury dlya resheniya zadachi vosstanovleniya smazannykh tsifrovykh izobrazhenii // Kibernetika i programmirovanie. - 2016. - 1. - C. 270 - 291. DOI: 10.7256/2306-4196.2016.1.17867. URL: http://www.e-notabene.ru/kp/article_17867.html
13.
E.S. Kubasheva, A.G. Gavrilov Metodika otsenki kachestva veb-prilozhenii // Programmnye sistemy i vychislitel'nye metody. - 2013. - 1. - C. 28 - 34. DOI: 10.7256/2305-6061.2013.01.2.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website