Статья 'Оптимизация параметров биоинспирированной гиперэвристики в задаче сегментации изображений' - журнал 'Кибернетика и программирование' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Policy of publication. Aims & Scope. > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming
Reference:

Optimization of parameters of bio-inspired hyper heuristics in the problem of image segmentation

Rodzin Sergey Ivanovich

PhD in Technical Science

Professor, Department of Software and Computer Usage, Southern Federal University

347928, Russia, Rostovskaya oblast', g. Taganrog, ul. Chekhova, 80-1

srodzin@yandex.ru
Другие публикации этого автора
 

 
El'-Khatib Samer Adnan

Applicant, Department of software and the use of computers, Southern Federal University

83076, Ukraine, Donetskaya oblast', g. Donetsk, ul. Ya. Galana, 48

samer_elkhatib@mail.ru

DOI:

10.7256/2306-4196.2016.5.18507

Review date:

27-03-2016


Publish date:

29-01-2017


Abstract: The subject of study is a new segmentation algorithm that allows improving the quality and speed of image processing in comparison with known algorithms. The authors consider the problem of segmentation of medical images and existing approaches to its solution. It is noted that segmentation is the most difficult part in the processing and analysis of medical images of biological tissue, since it is necessary select areas that correspond to different objects or structures on histological specimens: cells, organelles and artifacts. Particular attention is paid to algorithms of particle swarms and k-means. In solving the problem, authors use swarm intelligence methodology, cluster analysis, the theory of evolutionary computation, mathematical statistics, computer modeling and programming. The article suggests a new hyper-heuristic algorithm and its modification to solve the problem of segmentation of medical images in order to improve image quality and processing speed. Authors present experimental results obtained on the basis of test data from a known set of medical MRI images using the software developed by the authors. The optimal values of coefficients that determine the behavior and efficiency hyper heuristics that reduces the number of iterations of the algorithm are defined. The results demonstrate the advantage and confirm the efficiency of hyper heuristics algorithms in systems of digital medical imaging solutions to the problem of segmentation of medical images.


Keywords: cluster, pixel, k-means algorithm, particle swarm algorithm, hyper heuristics, segmentation images, optimization, distance, experiment, modeling
This article written in Russian. You can find full text of article in Russian here .

References
1.
Gonzalez R.C., Woods R.E. Digital image processing. Prentice-Hall, 2008. 954 r.
2.
Pratt W.K. Introduction to digital image processing. CRC Press, 2013. 756 r.
3.
Gan G., et. Data clustering: theory, algorithms, and applications.-SIAM, Philadelphia, ASA, Alexandria, 2007. 466 p.
4.
Xu R., et. Clustering. N.Y.: John Wiley & Sons, 2009. 358 p.
5.
Ilango M., et. A survey of grid based clustering algorithms // Int. jour. of eng. science and technology. 2010. vol. 2(8). P. 3441-3446.
6.
David L. Object recognition from local scale-invariant features // Proc. of the Int. Conf. on Computer Vision, 1992, vol. 2, P. 1150–1157.
7.
Rother C., Kolmogorov V., Blake A. GrabCut-interactive fore-ground extraction using iterated graph cuts. UK: Microsoft research Cambridge, 2003. P. 24.
8.
Bradski G., Kaehler A. Learning OpenCV: Computer vision with the OpenCV library.-O’Reylly Media, 2008. P. 45.
9.
Doronicheva A.V., Savin S.Z. Metody raspoznavaniya meditsinskikh izobrazhenii dlya zadach komp'yuternoi avtomatizirovannoi diagnostiki // Sovremennye problemy nauki i obrazovaniya. 2014. № 4. S. 13; URL: http://www.science-education.ru/ru/article/view?id=14414 (data obrashcheniya: 27.02.2016).
10.
Burke E.K., Kendall G. Search methodologies: introductory tutorials in optimization and decision support techniques / Ross P. Chapter 20. Hyper-heuristics. Springer science+business media, NY, 2014. P. 611-623.
11.
Skobtsov Yu.A., El'-Khatib S.A. Komp'yuternaya sistema segmentatsii meditsinskikh izobrazhenii metodom roya chastits // Vestnik NTU "KhPI". Seriya: Informatika i modelirovanie. Khar'kov: NTU "KhPI". 2015. № 36. S. 147-154.
12.
El'-Khatib S.A., Skobtsov Yu.A. Sistema segmentatsii meditsinskikh snimkov metodom murav'inykh kolonii // Nauchno-tekhnicheskie vedomosti SPbPU «Informatika. Telekommunikatsii. Upravlenie». 2015. № 2(217). S. 9-19.
13.
Eberhart R., Shi Yu., Kennedy J. Swarm intelligence. Morgan Kaufmann, 2010. 512 r.
14.
Poli R. Analysis of the publications on the applications of particle swarm optimization // Jour. of artificial evolution and applications. 2008. Article ID 685175. R. 1-10.
15.
Kureichik V.V., Kureichik V.M., Rodzin S.I. Teoriya evolyutsionnykh vychislenii. M.: Fizmatlit, 2012. 260 s.
16.
Rodzin S. Smart dispatching and metaheuristic swarm flow algorithm // Jour. of computer and systems sciences international. 2014. Vol. 53. No. 1. P. 109–115.
17.
McQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations // Proc. of the 5th Berkeley symp. on mathematical statistics and probability, (MSP’67), Uni of California press, Berkeley, 1967. P. 281-297.
18.
Rana S., Jasola Kumar R. A hybrid sequential approach for data clustering using k-means and particle swarm optimization algorithm // Int. Jour. of Engineering, Science and Technology. 2010. Vol. 2. No. 6.-P. 167-176.
19.
Saini G., Kaur H. A novel approach towards k-mean clustering algorithm with PSO // Int. jour. of computer science and information technologies. – 2014.-vol. 5 (4). – P. 5978-5986.
20.
El-Desouky N., et. A new approach to weight variation in swarm optimization // Proc. of the 9th int. conf. Al-azhar engineering, 2007. P. 240 – 244.
21.
Meditsinskaya sistema OsiriX [Elektronnyi resurs]. – Rezhim dostupa: http://www.osirix-viewer.com
22.
Korobeinikov A.G., Aleksanin S.A. Metody avtomatizirovannoi obrabotki izobrazhenii pri reshenii zadachi magnitnoi defektoskopii // Kibernetika i programmirovanie. - 2015. - 4. - C. 49 - 61. DOI: 10.7256/2306-4196.2015.4.16320. URL: http://www.e-notabene.ru/kp/article_16320.html
23.
Korobeinikov A.G., Fedosovskii M.E., Aleksanin S.A. Razrabotka avtomatizirovannoi protsedury dlya resheniya zadachi vosstanovleniya smazannykh tsifrovykh izobrazhenii // Kibernetika i programmirovanie. - 2016. - 1. - C. 270 - 291. DOI: 10.7256/2306-4196.2016.1.17867. URL: http://www.e-notabene.ru/kp/article_17867.html
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website