Статья 'Компьютерное моделирование динамики затопления территорий в случае чрезвычайных ситуаций с использованием технологий параллельных вычислений' - журнал 'Кибернетика и программирование' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Policy of publication. Aims & Scope. > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming
Reference:

Numerical Simulation of the Dynamics of Floods in the Event of Emergency Situations Using Parallel Computing Technology

Dyakonova Tatyana

post-graduate student of the Department of Information System and Computer Simulation at Volgograd State University

400062, Russia, Volgograd, pr. Universitetskii, 100

dyakonova_10@mail.ru
Khoperskov Alexander

Doctor of Physics and Mathematics

professor of the Department of Information Systems and Computer Simulation at Volgograd State University

400062, Russia, Volgograd, pr. Universitetskii, 100

khoperskov@rambler.ru
Khrapov Sergei

PhD in Physics and Mathematics

associate professor of the Department of Information Systems and Computer Simulation at Volgograd State University

400062, Russia, Volgograd, pr. Universitetskii, 100

xss-ip@mail.ru

DOI:

10.7256/2306-4196.2016.3.18235

Review date:

06-03-2016


Publish date:

25-06-2016


Abstract: The subject of the study is the hydrological conditions in the territory of the Volga-Akhtuba floodplain taking into account high volumes of water pass through the dam of the Volzhsk hydroelectric power station. The hydrological regime determines both the environmental position of the unique landscape of about 20 thousand square kilometers and the possibility of the rational usage of the territory for the purposes of fish farming, agricultural and recreational functions. Mathematical modeling allows to solve a large number of problems of the floodplain hydrology and to maintain an optimal level of the territory control. The research is focused on the study of emergency situation consequences that occurred because of the high water level in the Volgograd reservoir or in case of accidents that happened at the hydroelectric power station dam. The models offered by the author can be used to provide the optimal schemes of people evacuation from the danger zone between the rivers depending on the external conditions. Particular attention is paid to the development of the effective software for hydrodynamic computational experiments. The study is based on the numerical simulations of the surface water dynamics by using the Eulerian-Lagrangian scheme of Saint-Venant equations integration and parallel CUDA-technology for GPUs calculations. The author has created the model of sowtware which allows to calculate hydrological conditions in the territory of the Volgo-Akhtuba floodplain in case of the very hight water flow through the Volga hydroelectric power station. Application of the CUBA technology-based parallelized code for GPUs can reduce the duration of simulations down by several hours using Tesla K40 processors. Another striking feature of the author's model is the precise digital terrain based on remote sensing data. It was found that the area between the Volga river and the Akhtuba river right bank as well as the urbanized territory including Volgograd, Volzhsky, Southern Industrial Areas, Svetlyi Jar will not be much affected even in case of the catastrophic flooding. 
.


Keywords: hydrology, flooding, Graphical Processing Unit, numerical scheme, floodplain, shallow water model, digital terrain model, CUDA-technology, parallel computations, computational fluid dynamics
This article written in Russian. You can find full text of article in Russian here .

References
1.
Voevodin A. F., Nikiforovskaya V.S., Vinogradova T.A. Matematicheskie modeli dlya prognozirovaniya protsessa rasprostraneniya voln katastroficheskikh pavodkov v sistemakh otkrytykh rusel i vodotokov // Vestnik Sankt-Peterburgskogo universiteta, Ser. 7, 2009, vyp. 3, C. 139-144.
2.
Kivva S.L., Zheleznyak M.I. Chislennoe modelirovanie dvumernogo otkrytogo potoka s podvizhnymi granitsami: raschety stoka na vodosbore i nakata voln tsunami na bereg // Vychislitel'nye tekhnologii, 2001, T.6, ch.2, C.343–350.
3.
Caviedes-Voullieme D., Garcia-Navarro P., Murillo J. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events // Journal of hydrology, 2012, 448–449, 39–59
4.
Lacasta A., Morales-Hernandez M., Murillo J., Garcia-Navarro P. GPU implementation of the 2D shallow water equations for the simulation of rainfall/runoff events // Environmental Earth Sciences, 2015, 74 (11), 7295-7305.
5.
Egorov V.A. Chislennye raschety vyazkikh techenii v model'nykh ruslakh s poimoi // Matematicheskie zametki YaGU, 2009, T. 15, Vyp. 2, S. 92-105.
6.
Eremin M.A., Khoperskov A.V. Komp'yuternaya model' proryva Volzhskoi // Vestnik Volgogradskogo gosudarstvennogo universiteta, Seriya 1: Matematika. Fizika, 2006, T.10, S. 139–142.
7.
Badenko N.V., Ivanov T.S., Kotlyar S.P., Osmolovskii K.A., Petroshenko M.V., Prokof'ev V.A. Razrabotka metodicheskogo i programmnogo obespecheniya dlya rascheta zon zatopleniya i otsenki ushcherbov pri avariyakh na GTS ili propuske pavodkov redkoi povtoryaemosti // Izvestiya Vserossiiskogo nauchno-issledovatel'skogo instituta gidrotekhniki im. B.E. Vedeneeva. 2014. № 273. S. 62-73.
8.
Beizel' S.A., Shokina N.Yu., Khakimzyanov G.S., Chubarov L.B., Kovyrkina O.A., Ostapenko V.V. O nekotorykh chislennykh algoritmakh rascheta nakata voln tsunami v ramkakh modeli melkoi vody. Vychislitel'nye tekhnologii. 2014. T. 19. № 1. S. 40-62.
9.
Shokin Yu.I., Beizel' S.A., Rychkov A.D., Chubarov L.B. Chislennoe modelirovanie nakata voln tsunami na poberezh'e s ispol'zovaniem metoda krupnykh chastits // Matematicheskoe modelirovanie. 2015. T. 27. № 1. S. 99-112.
10.
Conde D.A.S., Telhado M.J., Baptista M.A.V., Ferreira R.M.L. Severity and exposure associated with tsunami actions in urban waterfronts: the case of Lisbon, Portugal // Natural Hazards, 2015, 79, 2125-2144
11.
Datsyuk V.N., Krukier L.A., Chikin A.L., Chikina L.G. Modelirovanie ekstremal'nogo navodneniya v del'te Dona na mnogoprotsessornykh vychislitel'nykh sistemakh // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Vychislitel'naya matematika i informatika. 2014. T. 3. № 1. S. 80-88.
12.
Pedloski Dzh. Geofizicheskaya gidrodinamika v 2-kh t. M.: Mir, 1984, 806 s.
13.
Ratia H., Murillo J., Garcia-Navarro P. Numerical modelling of bridges in 2D shallow water flow simulations // International journal for numerical methods in fluids, 2014, 75, 250–272
14.
Klimovich V.I., Prokof'ev V.A. Chislennoe issledovanie zavisimosti morskikh vodozabornykh sooruzhenii na osnove resheniya planovoi zadachi gidrodinamiki otkrytogo potoka i transporta nanosov // Izvestiya Vserossiiskogo nauchno-issledovatel'skogo instituta gidrotekhniki im. B.E. Vedeneeva. 2002. T. 240. S. 134-145.
15.
Juez, C., Murillo, J., and García-Navarro, P. One-Dimensional Riemann Solver Involving Variable Horizontal Density to Compute Unsteady Sediment Transport // Journal of hydraulic engineering, 2016, V.142, N3, 04015056, 15 p.
16.
Ferreira R.M.L., Franca M.J., Leal J.G.A.B., Cardoso A.H. Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics // Canadian journal of civil engineering, 2009, 36, 1605-1621
17.
Peltier Y., Erpicum S., Archambeau P., Pirotton M., Dewals B. Can Meandering Flows in Shallow Rectangular Reservoirs Be Modeled with the 2D Shallow Water Equations? // Journal of hydraulic engineering, 2015, v.141, N6, 04015008, 10 p.
18.
Nikitin V.N., Nikolaeva Z.V. Gidrodinamicheskii podkhod k opredeleniyu zon podtopleniya pri chrezvychainykh situatsiyakh // Interekspo Geo-Sibir'. 2013. T. 4. № 1. S. 3-6.
19.
Malyshev I.I. Razrabotka informatsionnoi sistemy modelirovaniya chrezvychainykh situatsii po zatopleniyu territorii okruga. etap sozdaniya tsifrovoi modeli rel'efa poimy reki Irtysh i prilegayushchei k nei territorii v raione g. Khanty-Mansiiska // Problemy bezopasnosti i chrezvychainykh situatsii. 2015. № 5. S. 88-101.
20.
D'yakonova T.A., Pisarev A.V., Khoperskov A.V., Khrapov S.S. Matematicheskaya model' dinamiki poverkhnostnykh vod // Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika. 2014. № 1 (20). S. 35-44.
21.
Ding Y., Wang S.S.Y. Identification of Manning’s Roughness Coefficients in Channel Network Using Adjoint Analysis // International Journal of Computational Fluid Dynamics, 2005, v.19, 3-13.
22.
Wang T., Chu V.H. Manning Friction in Steep Open-channel Flow // Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012, 14 p.
23.
Lepikhin A.P., Bogomolov A.V. K istorii ustanovleniya i sovremennye predstavleniya ob osnovnoi zakonomernosti ravnomernogo ustanovivshegosya techeniya v vodotokakh (k 240-letiyu formuly A. Shezi) // Vodnoe khozyaistvo Rossii: problemy, tekhnologii, upravlenie. 2015. № 6. S. 76-92.
24.
Chao X., Jia Y., Shields Jr.F.D., Wang S.S.Y., Cooper C.M. Three-dimensional numerical modeling of cohesive sediment transport and wind wave impact in a shallow oxbow lake // Advances in Water Resources, 2008, Volume 31, N 7, p. 1004-1014.
25.
Pisarev A.V., Khrapov S.S., Agafonnikova E.O., Khoperskov A.V. Chislennaya model' dinamiki poverkhnostnykh vod v rusle Volgi: otsenka koeffitsienta sherokhovatosti // Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki, 2013, N 1, s. 114-130.
26.
Khrapov S.S., Pisarev A.V., Kobelev I.A., Zhumaliev A.G., Agafonnikova E.O., Losev A.G. and Khoperskov A.V. The Numerical Simulation of Shallow Water: Estimation of the Roughness Coefficient on the Flood Stage // Advances in Mechanical Engineering, 2013, Volume 2013, Article ID 787016, 11 p
27.
Koutitas C, O’Connor B. Modeling three-dimensional wind-induced flows // ASCE, Journal of Hydraulic Division, 1980; 106(11): 1843–65
28.
Bailey MC, Hamilton DP. Wind induced sediment resuspension: a lake-wide model // Ecological Modeling, 1997; 99: 217–28.
29.
Kocyigit MB, Kocyigit O. Numerical study of wind-induced currents in enclosed homogeneous water bodies // Turkish J. Eng. Env. Sci. 2004; 28: 207–21
30.
Khrapov S.S., Khoperskov A.V., Kuz'min N.M., Pisarev A.V., Kobelev I.A. Chislennaya skhema dlya modelirovaniya dinamiki poverkhnostnykh vod na osnove kombinirovannogo SPH-TVD-podkhoda // Vychislitel'nye metody i programmirovanie. 2011, T. 12, №1, S. 282-297.
31.
Khrapov S.S., Khoperskov A.V, Pisarev A.V., Kobelev I.A. Geoinformatsionnaya sistema dlya prognoza sezonnykh zatoplenii // InterKarto-InterGIS 18 : materialy Mezhdunarodnoi konferentsii, Rossiya, Smolensk, 26-28 iyunya 2012. — 2012, S. 386-394.
32.
Khoperskov A.V., Khrapov S.S., Pisarev A.V., Voronin A.A., Eliseeva M.V., Kobelev I.A. Zadacha upravleniya gidrologicheskim rezhimom v ekologo-ekonomicheskoi sisteme «Volzhskaya GES – Volgo-Akhtubinskaya poima». Ch.1. Modelirovanie dinamiki poverkhnostnykh vod v period vesennego pavodka // Problemy upravleniya, 2012, № 5, S. 18-25.
33.
Pisarev A.V., Khrapov S.S., Khoperskov A.V. Chislennaya skhema na osnove kombinirovannogo podkhoda SPH-TVD: problema modelirovaniya sdvigovykh techenii // Vestnik VolGU. Ser.1: Matematika. Fizika. 2011. T.15. №2. S. 138-141.
34.
Kuz'min N.M., Belousov A.V., Shushkevich T.S., Khrapov S.S. Chislennaya skhema CSPH-TVD: issledovanie vliyaniya ogranichitelei naklonov // Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika. 2014. № 1. S. 22-33.
35.
Shushkevich T.S., Kuz'min N.M., Butenko M.A. Trekhmernyi parallel'nyi chislennyi gazodinamicheskii kod na osnove smeshannogo Lagranzhevo-Eilerova podkhoda // Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika. 2015. № 4 (29). S. 24-34.
36.
Brechka D.M., Pugin K.V., Stopkin S.V. Razrabotka sistemy upravleniya vychislitel'nym klasterom // Matematicheskie struktury i modelirovanie. 2015. № 3 (35). S. 72-80.
37.
Antonov A.S., Voevodin V.V., Daugel'-Dauge A.A., Zhumatii S.A., Nikitenko D.A., Sobolev S.I., Stefanov K.S., Shvets P.A. Obespechenie operativnogo kontrolya i effektivnoi avtonomnoi raboty superkomp'yuternogo kompleksa MGU // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Vychislitel'naya matematika i informatika. 2015. T. 4. № 2. S. 33-43.
38.
Sibiryakov M.A., Sukhikh A.V., Ivanov K.V., Koshpaev A.A. Postroenie vychislitel'nogo klastera na osnove kommunikatsionnoi sredy PCI Express // Kibernetika i programmirovanie. 2015. ‐ № 5. ‐ S.173‐180.
39.
Lacasta A., Morales-Hernandez M., Murillo J., Garcia-Navarro P. Implementation of a GPU 2D Shallow Water model on Unstructured Meshes // Environmental Earth Sciences, 2015, Volume 74, Issue 11 , pp 7295-7305
40.
Sukhinov A.I., Chistyakov A.E., Semenyakina A.A., Nikitina A.V. Parallel'naya realizatsiya zadach transporta veshchestv i vosstanovleniya donnoi poverkhnosti na osnove skhem povyshennogo poryadka tochnosti // Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii. 2015. T. 16. № 2. S. 256-267.
41.
Fralenko V.P., Agronik A.Yu. Sredstva, metody i algoritmy effektivnogo rasparallelivaniya vychislitel'noi nagruzki v geterogennykh sredakh // Programmnye sistemy: teoriya i prilozheniya. 2015. T. 6. № 3-1 (26). S. 73-92.
42.
Popkov A.Yu., Zubarev D.V. Parallel'naya realizatsiya algoritma resheniya zadachi entropiino-robastnogo otsenivaniya na vychislitel'nykh sistemakh geterogennoi arkhitektury // Informatsionnye tekhnologii i vychislitel'nye sistemy. 2015. № 4. S. 51-60.
43.
Malashenko Yu.E., Nazarova I.A. Normativnyi dinamicheskii analiz predel'nykh rezhimov funktsionirovaniya geterogennoi vychislitel'noi sistemy // Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya. 2015. № 5. S. 73.
44.
Voronin A.A., Eliseeva M.V., Pisarev A.V., Khoperskov A.V., Khrapov S.S. Imitatsionnye modeli dinamiki poverkhnostnykh vod s ispol'zovaniem dannykh distantsionnogo zondirovaniya: vliyanie rel'efa mestnosti // Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii. 2012, № 3(19), S. 54-62.
45.
Pisarev A.V., Khrapov S.S., Voronin A.A., D'yakonova T.A., Tsirkova E.A. Osobennosti dinamiki zatopleniya Volgo-Akhtubinskoi poimy v zavisimosti ot rezhimov ispareniya i infil'tratsii // Vestnik Volgogradskogo gosudarstvennogo universiteta, Seriya 1: Matematika. Fizika, 2012, 1, S. 36-41.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website