|
MAIN PAGE
> Back to contents
Cybernetics and programming
Reference:
Borodin A.V., Biryukov E.S. —
The practical implementation of some algorithms related to the problem of number composing
// Cybernetics and programming.
– 2015. – № 1.
– P. 27 - 45.
DOI: 10.7256/2306-4196.2015.1.13734 URL: https://en.nbpublish.com/library_read_article.php?id=13734
The practical implementation of some algorithms related to the problem of number composing
Borodin Andrey Viktorovich
PhD in Economics
Professor, Department of Computer Science and System Programming, Volga State University of Technology
424000, Russia, respublika Marii El, g. Ioshkar-Ola, pl. Lenina, 3
|
bor@mari-el.com
|
|
 |
Другие публикации этого автора |
|
Biryukov Evgeniy Sergeevich
student, Department of Informatics and System Programming, Volga State University of Technology
424000, Rossiya, respublika Mariy El, g. Yoshkar-Ola, pl. Lenina, 3
|
Eugene.Biryukov@icloud.com
|
|
 |
DOI: 10.7256/2306-4196.2015.1.13734
Review date:
19-11-2014
Publish date:
20-01-2015
Abstract. Among combinatorial algorithms of additive number theory the algorithms of the algorithms for listing compositions of natural numbers have a special place. On the one hand, ideologically, they are among the simplest algorithms in mentioned theory. On the other hand, they play a huge role in all applications somehow connected with the polynomial theorem. In recent years, due to the rapid development of the general theory of risk ideas underlying the polynomial theorem were involved to in the challenges of risk measurement in homogeneous systems of high dimensionality. Solving these problems requires providing mass listing compositions numbers of fixed length and calculating the amount of such compositions for sufficiently large values of both number and the length of composition. In these circumstances, the most urgent task is in effective implementation of these algorithms. The presented article is devoted to the questions related with the synthesis of efficient algorithms for listing the compositions of fixed length and calculating the amount of such compositions. As a methodological base of this study authors use certain facts of set theory, approaches of theory of complex algorithms, as well as some basic results of the theory of numbers. Within this paper, the author propose a new efficient implementation of two algorithms: algorithm for listing all the compositions of fixed length based on the idea of multiset representation of the number partitions and algorithm for calculating the amounts of the compositions of given kind, implemented without involvement of high bitness machine arithmetic. The article shows not only an estimate of the complexity of the proposed algorithms but also presents the results of numerical experiments demonstrating the effectiveness of the implementation of the algorithms discussed in the VBA programming language.
Keywords:
number composition, number expansion, partition of the number, polynomial theorem, multiset, complexity of the algorithm, risk, risk theory, risk measurement, total cost of ownership
This article written in Russian. You can find full text of article in Russian
here
.
References
1.
|
Borodin, A. V. Arkhitektura informatsionnoi sistemy podderzhki prinyatiya reshenii po upravleniyu personalom roznichnoi podsistemy kommercheskogo banka // Programmnye sistemy i vychislitel'nye metody. – 2014. – №2. – S. 174–190. – DOI: 10.7256/2305–6061.2014.2.12331.
|
2.
|
Borodin, A. V. Modeli upravleniya personalom v roznichnoi podsisteme kommercheskogo banka / A. V. Borodin // Ekonomika i sotsium: sovremennye modeli razvitiya obshchestva v aspekte globalizatsii: materialy III mezhdunarodnoi nauchno-prakticheskoi konferentsii (12 fevralya 2014 g.). – Saratov: Izdatel'stvo TsPM «Akademiya Biznesa», 2014. – S. 26–30.
|
3.
|
Borodin, A. V. Stokhasticheskoe modelirovanie v zadachakh sinteza optimal'nykh topologii setei distributsii tochnogo vremeni / A. V. Borodin, D. R. Zub'yak // Tekhnicheskie nauki – ot teorii k praktike. Sbornik statei po materialam XXXIV mezhdunarodnoi nauchno-prakticheskoi konferentsii. № 5 (30). – Novosibirsk: Izdatel'stvo «SibAK», 2014. – S. 7–15.
|
4.
|
Vilenkin, N. Ya. Kombinatorika / N. Ya. Vilenkin. – M.: Nauka, 1969. – 328 s.
|
5.
|
Kompozitsiya chisla // Vikipediya. Svobodnaya entsiklopediya. – URL: https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BE%D0%B7%D0%B8%D1%86%D0%B8%D1%8F_%D1%87%D0%B8%D1%81%D0%BB%D0%B0. Data obrashcheniya: 17.11.2014.
|
6.
|
Kormen, T. Kh. Algoritmy: postroenie i analiz / T. Kh. Kormen, Ch. I. Leizerson, R. L. Rivest, K. Shtain. – M.: OOO «I. D. Vil'yams», 2013. – 1328 s.
|
7.
|
Reingol'd, E. Kombinatornye algoritmy: teoriya i praktika / E. Reingol'd, Yu. Nivergel't, N. Deo. – M.: Mir, 1980. – 477 s.
|
8.
|
Urazaeva, T. A. Algebra riskov / T. A. Urazaeva. – Ioshkar-Ola: Povolzhskii gosudarstvennyi tekhnologicheskii universitet, 2013. – 209 s.
|
9.
|
Urazaeva, T. A. Instrumental'nye metody analiza riska v ekonomike bezopasnosti vychislitel'nykh setei / T. A. Urazaeva // Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Innovatsionnoe razvitie rossiiskoi ekonomiki». Chast' 1. – M.: MESI, 2010. – S. 246-250.
|
10.
|
Urazaeva, T. A. Paket prikladnykh programm «Mul'tiMIR»: arkhitektura i primenenie / T. A. Urazaeva // NB: Kibernetika i programmirovanie. – 2014. – № 5. – S.34-61. – DOI: 10.7256/2306-4196.2014.5.12962. – URL: http://e-notabene.ru/kp/article_12962.html.
|
11.
|
Urazaeva, T. A. Paket prikladnykh programm «Mul'tiMIR» v praktike analiza kreditnogo riska / T. A. Urazaeva // VIII Mezhdunarodnaya nauchno-metodicheskaya konferentsiya «Sovershenstvovanie podgotovki IT-spetsialistov po napravleniyu «Prikladnaya informatika» dlya innovatsionnoi ekonomiki»: Sbornik nauchnykh trudov. – M.: Moskovskii gosudarstvennyi universitet ekonomiki, statistiki i informatiki, 2012. – S. 182-186.
|
12.
|
Urazaeva, T. A. Stoimostnoi analiz riska narusheniya odnoi politiki bezopasnosti v vychislitel'nykh setyakh / T. A. Urazaeva // Modelirovanie i analiz bezopasnosti i riska v slozhnykh sistemakh: Trudy Mezhdunarodnoi nauchnoi shkoly MA BR – 2010 (Sankt-Peterburg, 6-10 iyulya, 2010 g.). – SPb.: GUAP, SPb., 2010. – S. 193-199.
|
13.
|
Urazaeva, T. A. Finansovye riski: algebraicheskaya model' ischisleniya / T. A. Urazaeva // Regional'naya ekonomika: teoriya i praktika. – 2010. – № 2(137). – S. 33-35.
|
14.
|
Arora, S. Computational Complexity: A Modern Approach / S. Arora, B. Barak. – New York: Cambridge University Press, 2009. – 594 p.
|
Link to this article
You can simply select and copy link from below text field.
|
|