Статья 'Надежность интегральных микросхем с алюминиевой металлизацией' - журнал 'Электроника и электротехника' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Article Processing Charge > Article Identification Policy > Plagiarism check policy > Editorial Board > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Back to contents
Electronics and Machinery
Reference:

Reliability of aluminized integrated circuits

Mustafaev Gasan Abakarovich

Doctor of Technical Science

Professor, Department of Computer Technologies and Integrated Circuits, Kabardino-Balkarian State University

360004, Russia, respublika Kabardino-Balkarskaya, g. Nal'chik, ul. Chernyshevskogo, 173, kab. 122

arslan_mustafaev@hotmail.com
Other publications by this author
 

 
Mustafaev Arslan Gasanovich

Doctor of Technical Science

Professor of the Department "Information technologies and information security" of the Dagestan State University of National Economy

367015, Russia, respublika Dagestan, g. Makhachkala, ul. Ataeva, 5, kab. 4.5

arslan_mustafaev@hotmail.com
Other publications by this author
 

 
Cherkesova Natal'ya Vasil'evna

PhD in Technical Science

Associate Professor at Kabardino-Balkarian State University

360004, Russia, the Kabardino-Balkar Republic, Nalchik, ul. Chernyshevskogo, 173, of. 122

natasha07_2002@mail.ru
Other publications by this author
 

 

DOI:

10.7256/2453-8884.2017.3.23345

Received:

16-06-2017


Published:

26-11-2017


Abstract: Aluminium with its alloys is the basic material of integrated circuits metallization. Use of VLSIC toughens the requirements to the parameters of metallization, which determine its reliability, such as surface resistance, step coating quality, number and sizes of tension-caused voids, and electromigration tolerance. Poor quality of metallization is one of the most dangerous defects in semiconductor technology of integrated circuits. Electromigration can cause failure when passing high-density current through metallization. The materials have been tested in order to estimate the intensity of metal resistance variation caused by electromigration. Based on the results of these tests, the authors conclude that geometrical factors play a dominant role in the mechanism of erosion of integrated circuits metallization caused by electromigration. With regard to the tests, the authors formulate recommendations about the transition from the sputtering technique to evaporation deposition. 


Keywords:

metallization, circuit, aluminum, electromigration, technology, electronics, semiconductor, connection, silicon, reliability

This article written in Russian. You can find original text of the article here .

Процесс металлизации заключается в реализации межкомпонентных соединений и создании контактов с низким сопротивлением к областям p- и n- типа и слоям поликристаллического кремния. При проведении процессов металлизации необходимо обеспечить следующие требования: хорошая адгезия металла на осаждаемой поверхности; низкое удельное и контактное сопротивление; отсутствие электромиграции; высокая коррозионная стойкость; стабильность на последующих стадиях процесса. Проблемы коррозии и электромиграции решаются подбором характеристик осаждаемых материалов.

При формировании металлизации и межсоединений в технологии полупроводников часто используется сплав алюминия с кремнием, добавки которого предотвращают пробой мелких переходов [1-4]. Однако в процессе охлаждения растворенный в алюминии кремний может выпадать из твердого раствора с алюминием. При этом могут образовываться преципитаты кремния на узлах зародышеобразования, таких как существовавшие ранее частицы кремния, границы зерен в пленке алюминия либо ступеньки в диэлектрике, а также может происходить эпитаксиальное осаждение на открывшихся участках подложки. С уменьшением размера контактного отверстия доля площади, занимаемой образующимся эпитаксиальным слоем, становится значительной, в результате чего резко возрастает контактное сопротивление (рис. 1а, б), на металлизации Аl-Si (1%) после отжига при 450 °С. При, этом контакт перестает быть омическим, что приводит к нелинейной зависимости параметров прибора от напряжения источника питания.

Рис.1.Зависимость контактного сопротивления от времени отжига для n+ и р+ эпитаксиальных слоев при различных размерах диаметров контактного отверстия.

Количество кремния, которое может выделяться из его твердого раствора с алюминием, определяется диффундирующим к контакту количеством материала в процессе охлаждения пластины, которое зависит, в свою очередь, от диффузионной длины. Последняя резко падает с температурой, и в условиях равновесного охлаждения общее количество выходящего из твердого раствора кремния равно разности его растворимости при максимальной температуре отжига и при текущей температуре пластины. Для оценки количества кремния, осаждающегося в контактном отверстии, вводят понятия эффективного времени диффузии t (его приняли равным 15 мин, так как за это время пластина, вынутая из печи, остывает до 250 °С), а эффективную температуру считают равной 315 °С, так как при температуре ниже 300 °С коэффициент диффузии пренебрежимо мал. Осажденный кремний лежит в основном внутри площади радиусом r вокруг контактного отверстия:

где D - коэффициент диффузии при 315 °С (для кремния в алюминии он равен ~ 4 мкм2/мин). В указанных выше режимах r = 8 мкм, и количество осажденного в контактном отверстии кремния V определяется как:

где S - растворимость при максимальной температуре отжига и d-толщина пленки. Анализ этих выражений показывает, что для ограничения преципитации кремния нужно быстро охлаждать пластину. Ограничению преципитации также способствуют уменьшение толщины пленки металлизации и величины S (а значит, температуры отжига, которая не может быть ниже 400 °С, что необходимо для отжига всех поверхностных состояний).

Для подавления эпитаксиального роста кремния можно также формировать преципитаты не на контактном отверстии, а на предварительно созданных зародышах, которыми могут служить не растворившиеся частицы кремния. При большой плотности зародышей они могут располагаться в пределах величины r   вокруг контактного отверстия. Очевидно, что чем выше плотность преципитатов на этих зародышах, тем ниже контактное сопротивление. К числу критических параметров относится размер пpеципитатов, поскольку при  малых размерах они могут полностью растворяться в пленке алюминия, а при  больших может не быть достигнута их критическая плотность, необходимая для преципитации за пределами контактного окна. Распределение частиц кремния по размерам регулируется температурой осаждения пленки металлизации. Оптимальной следует считать температуру осаждения 300 °С, так как при этом достигается однородное распределение частиц преципитатов средних размеров ( крупные преципитаты могут быть причиной уменьшения поперечного сечения дорожки металлизации для переноса тока и возникновения в них напряжений, что ускоряет появление отказов металлизации). Отжиг также по-разному влияет на размер преципитата в зависимости от температуры осаждения пленки металлизации.

Предотвращению эпитаксиального осаждения способствует также размещение дополнительного металлического слоя между пленкой алюминия и контактом. Этот слой должен обеспечивать минимальное взаимодействие с алюминием, не влиять на другие свойства пленки и иметь низкое контактное сопротивление как с n+ так и с p+ - областями. Таким требованиям удовлетворяют силициды молибдена, тантала и вольфрама, сплав титана с вольфрамом и титан. Так, введение слоя силицида вольфрама позволило сохранить низкое контактное сопротивление контакта диаметром 1,2 мкм при температуре до 450 °С, в то время как без этого слоя контактное сопротивление заметно возрастало.

Плохое качество покрытия ступеньки опасный дефект металлизации. Изменение размера отверстия в горизонтальном направлении происходит в большой степени, чем в вертикальном, в результате чего существенно возрастает отношение ширины к длине контактных и сквозных отверстий. При этом для последних диаметр составляет 1 мкм и менее, а толщина слоя диэлектрика поддерживается относительно большой, чтобы поддерживать низкий уровень емкости. При покрытии ступеньки две основные трудности связаны с наличием нижележащих слоев с сформированным рисунком, а также с покрытием контактных и сквозных отверстий.

Улучшение покрытия ступеньки было достигнуто при осаждении пленки алюминия в условиях распыления при смешении по постоянному току, поскольку вызванная смещением ионная бомбардировка в конечном итоге приводит к повторному осаждению металла [5]. При высоких скоростях повторного осаждения отмечена планаризация сквозных отверстий, что однако достигается за счет снижения суммарной скорости осаждения и тем самым - производительности процесса. При подаче смещении в тех же режимах происходит заметное уменьшение размера зерна пленки и улучшение гладкости поверхности. Вместе с тем, в условиях постоянного смещения резко снижается устойчивость пленки алюмния к электромиграции. Одновременная подача смещения и нагрев подложки обеспечивают хорошее качество покрытия ступеньки без снижения производительности процесса осаждения.

Одним из наиболее распространенных видов отказов металлизации на основе алюминия являются обрывы цепи в процессе термоциклирования, вызванные образованием пустот [6]. Появление пустот обусловлено напряжениями, возникающими при охлаждении пластины после нанесения пассивирующего слоя оксида или нитрида кремния. Градиенты напряжений вызывают диффузию вакансий и их последующую коалесценцию с образованием пустот, что происходит в основном по краям линий. Критичность этого процесса возрастает по мере снижения ширины линии металлизации. Для предотвращения катастрофических отказов схем следует создавать условия, в которых образуется несколько малых пустот, не объединяющихся в большие. Подавлению процесса образования пустот способствует введение меди в алюминий и нанесение подслоя некоторых тугоплавких материалов, например силицида молибдена [7, 8]. Пустоты также являются причиной отказов в сквозных отверстиях на границе двух слоев металлов. Нанесение тугоплавкого металла перед осаждением второго слоя металлизации предотвращает распространение пустот в алюминий с поверхности раздела двух слоев металлизации [9, 10].

References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.