по
Arctic and Antarctica
12+
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Article Processing Charge > Article Identification Policy > Plagiarism check policy > Editorial Board > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Back to contents
Publications of Maslakov Alexey
Arctic and Antarctica, 2018-4
Maslakov A., Belova N.G., Baranskaya A.V., Romanenko F.A. - Massive ice beds of the eastern coast of the Chukchi Peninsula under climate change: some results of the 2014-2018 expeditions pp. 30-43

DOI:
10.7256/2453-8922.2018.4.28528

Abstract: The article presents preliminary results of field studies of the outcrops of the eastern coast of the Chukchi Peninsula, containing massive ice beds. The expeditions were conducted in 2014–2018. Descriptions and photographs of ice and enclosing sediments are given. Four outcrops of ice up to 4.7 m thick and up to 45 m long are described within the Saint Lawrence Bay and Mechigmensky Bay. The morphology of the massive ice bodies, a variety of ice structures and host sediments allow suggesting their polygenetic origin. The results of long-term active layer thickness monitoring indicated that the intensification of thaw slump events in the past four years is associated with the increase in the depth of thawing, which in 2018 reached highest values in over two decades. The formation of thaw slumps and associated thermocirques is cyclic. As the active layer thickness increases, their number increases, forming nested thermocirques, and as the thaw depth decreases, cryogenic creep slows down.
Arctic and Antarctica, 2017-4
Maslakov A. - The assessment of geocryological threats to the developed territories of Eastern Chukotka pp. 57-72

DOI:
10.7256/2453-8922.2017.4.24863

Abstract:  This article presents and tests the method of assessment of the various geocriological threats to the developed territories of Eastern Chukotka. The research is based on the complex of field geodesic, geophysical, and geocryological measurements conducted in the core settlement of the indicated region (Lorino), as well as archival data of the engineering surveys of previous years. Based on the acquired materials using the calculation methods, the author was able to determine the current geocryological situation in subsoil of the settlement along with the development level of the negative cryogenic processes and phenomena. In the course of this war was performed the assessment of threats associated with the changes in cryogenic situation and development of the negative cryogenic processes. As a result of this research, the author allocated the sections of settlement within which is traced the low level of natural sustainability of lithocryogenic ground in terms of technogenic disturbance, as well as high level of threat pertaining to decline in the carrying capacity of refrigerated piles and increase of tangential forces of frost heaving of soil.
Arctic and Antarctica, 2017-1
Maslakov A. - The results of active layer studies near Lorino settlement, Eastern Chukotka pp. 127-139

DOI:
10.7256/2453-8922.2017.1.22482

Abstract: The paper contains the results of active layer studies in Lorino monitoring site (Eastern Chukotka, Russia), conducted in framework of the Circumpolar Active Layer Monitoring (CALM) program during 2010-2015. The study site includes tundra landscapes of Eastern Chukotka coastal lowlands. The main purpose of the paper is to obtain spatial and temporal patterns of seasonal melting distribution and reveal the main natural factors defining active layer depth within study site. The author demonstrates the predominance of thermal forcing in active layer development, which was strongly complicated by local (microrelief, vegetation, soil moisture, etc.) conditions. These factors determined high spatial and temporal variability of active layer thickness within single grid (100×100 m). The study also reveals the lack of statistical data on natural characteristics and the need for further detailed studies of seasonal melting process.
Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.