Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Policy of publication. Aims & Scope. > Article retraction > Ethics > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

В погоне за двумя зайцами поймай обоих сразу!
34 журнала издательства NOTA BENE входят одновременно и в ERIH PLUS, и в перечень изданий ВАК
При необходимости автору может быть предоставлена услуга срочной или сверхсрочной публикации!
MAIN PAGE > Back to contents
Making technical descisions by means of multi-agent systems
Bondarenko Igor' Borisovich

PhD in Technical Science

Associate Professor, St. Petersburg National Research University of Information Technologies, Mechanics and Optics

197101, g. Saint Petersburg, Kronverkskii prospekt, d.49.

Korobeinikov Anatolii Grigor'evich

Doctor of Technical Science

197101, g. Saint Petersburg, Kronverkskii prospekt, d.49

Prokhozhev Nikolai Nikolaevich

197101, g. Saint Petersburg, Kronverkskii prospekt, d.49

Mikhailichenko Ol'ga Viktorovna

197101, g. Saint Petersburg, Kronverkskii prospekt, d.49



This paper describes a method of making technical decisions using the theory of multi-agent systems. The structure of decision-making system, and describes the possible variations of its constituent components. Multi-agent systems are the result of the intersection theory of systems with distributed artificial intelligence systems. In co-operative multi-agent systems, the decision is made as a result of joint work, and competing - individual agents' actions. At the corporate structures of multi-agent systems have the property of self-organization. The problem of making decision is the task of selecting the best option out of many under conditions of uncertainty. The functions of the agent's behavior is divided into three parts: the first lays designer agent, the second is calculated as a result of the agent on development activities, and the third - formed as a result of learning agent with experience. Job agent in a partially observable, stochastic, sequential, dynamic, continuous and multi-agent environment is considered to be the most difficult.

Keywords: knowledge base, intelligent agent, interface, artificial intelligence, structure, technical solutions, multiagent environment, algorithm, allocation system, decision making



Article was received:


Review date:


Publish date:


This article written in Russian. You can find full text of article in Russian here .

Tarannikov, N. A. Razrabotka mnogoagentnoi sistemy dlya podderzhki prinyatiya reshenii v ekonomike i upravlenii: dissertatsiya ... kandidata ekonomicheskikh nauk: 08.00.13 Volgograd, 2007. – 98 s.
Lyuger Dzhordzh F. Iskusstvennyi intellekt: strategii i metody resheniya slozhnykh problem/Dzhordzh F. Lyuger, 4-e izdanie.: Per. s angl.–M.: Izdatel'skii dom "Vil'yams", 2003.–864s.
Shampandar Aleks Dzh. Iskusstvennyi intellekt v komp'yuternykh igrakh: kak obuchit' virtual'nye personazhi reagirovat' na vneshnie vozdeistviya/ Aleks Dzh. Shampandar: Per. s angl. – M.: OOO "I.D. Vil'yams", 2007. – 768s.
Rassel, S. Dzh. Iskusstvennyi intellekt: sovremennyi podkhod/ S.Dzh. Rassel, Norvig P. Norvig, 2-e izd.: Per. s angl. – M.: Izdatel'skii dom "Vil'yams", 2006. – 1408s.
Link to this article

You can simply select and copy link from below text field.

Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website