Journal Menu
> Issues > Rubrics > About journal > Authors > Requirements for publication > Council of Editors > List of peer reviewers > Review procedure > Policy of publication. Aims & Scope. > Article retraction > Ethics > Legal information
Journals in science databases
About the Journal

В погоне за двумя зайцами поймай обоих сразу!
34 журнала издательства NOTA BENE входят одновременно и в ERIH PLUS, и в перечень изданий ВАК
При необходимости автору может быть предоставлена услуга срочной или сверхсрочной публикации!
MAIN PAGE > Back to contents
Recognition of Partially Masked Group Point Objects by Most Similar Local Description of Their Form
Krevetskii Aleksandr Vladimirovich

PhD in Technical Science

Head of the Department of Computer Science, Volga State University of Technology

424000, Russia, Marii El, g. Yoshkar-Ola, pl. Lenina, 3

krevetskyav@volgatech.net
Chesnokov Sergei Evgen'evich

PhD in Technical Science

Associate Professor, Department of Computer Science, Volga State University of Technology

424000, Russia, respublika Marii El, g. Ioshkar-Ola, pl. Lenina, 3, of. kafedra informatiki

shesnokov@gmail.com
Abstract. Group point objects (GPO) are multitudes of isolated background-contrasting dots united by one common feature. Many apps use a method of mutual arrangement of group point objects. Implementation of well-known methods for recognizing GPOs gets difficult when an observer has only part of GPOs constituting one of famous classes within his or her sight. Possible deviations of point objects from their standard positions additionally complicate the task to recognize partially marked GPOs. In their research the authors perform recognition of GPOs based on most similar local description of configuration with adjacent elements of GPOs. Cylindrical sections of the abstract vector field with sources in GPO elements and restricted scale of long-range interaction are used as local descriptions. Local descriptions of GPO configuration are viewed as discrete complex-valued codes. The module and argument of each reference correspond to the strength and direction of the vector field action. Similarity of such description of forms on the basis of the dot product module ensures invariance to GPO observation angle and does not depend on GPO shift in picture. Recognition features prove efficiency of the reviewed method for recognizing partially masked GPOs in a practically significant scope of random fluctuations in GPO element coordinates. 
Keywords: vector field, analysis of point scenes, spatial compactness, recognition of group objects, point field, associate solid image, cylindrical section of the field, group point object, invariance to rotation, complex coding
DOI: 10.7256/2306-4196.2016.6.21445
Article was received: 17-12-2016

Review date: 20-12-2016

Publish date: 21-12-2016

This article written in Russian. You can find full text of article in Russian here.

References
1.
Tochechnye polya i gruppovye ob''ekty / Ya. A. Furman, A. A Rozhentsov, R. G. Khafizov, D. G. Khafizov, A. V. Krevetskii, R. V. Eruslanov; pod obshch. red. Ya. A. Furmana. – M: FIZMATLIT, 2014. – 440 s.
2.
Verba V.S. Obnaruzhenie nazemnykh ob''ektov. Radiolokatsionnye sistemy obnaruzheniya i navedeniya vozdushnogo bazirovaniya. – M.: Radiotekhnika, 2007. – 360 s.
3.
Buryi A.S., Mikhailov S.N. Metody identifikatsii astroorientirov v zadachakh orientatsii i navigatsii kosmicheskogo apparata po izobrazheniyam zvezdnogo neba // Zarubezhnaya radioelektronika. – №7-8, 1994. – S.44-52.
4.
Anisimov V.V., Kurganov V.D., Zlobin V.K. Raspoznavanie i tsifrovaya obrabotka izobrazhenii. – M.: Vyssh. shk., 1983. – 295 s.
5.
Krevetskii A.V. Obrabotka izobrazhenii v sistemakh orientatsii letatel'nykh apparatov.-Ioshkar-Ola: Izd-vo MarGTU, 1998. – 149 s.
6.
Mandel' I. D. Klasternyi analiz. – M.: Finansy i statistika, 1988. – 176 s.
7.
Tsifrovaya obrabotka videoizobrazhenii / A.A. Luk''yanitsa, A.G.Shishkin. – M.: «Ai-Es-Es Press», 2009. – 518 s.
8.
Vvedenie v konturnyi analiz; prilozheniya k obrabotke izobrazhenii i signalov / Ya.A. Furman, A.V. Krevetskii, A.K. Peredreev, i dr.; pod red. Ya.A. Furmana. – 2-e izd. – M.: FIZMATLIT, 2003. – 592 s.
9.
Krevetskii A.V. Invariantnye k forme obnaruzhenie i prostranstvennaya lokalizatsiya grupp tochechnykh ob''ektov v trekhmernom prostranstve // Vestnik MarGTU. Radiotekhnicheskie i infokommunikatsionnye sistemy. – Ioshkar-Ola: Izd-vo MarGTU, 2011.– №1. – S. 47-53.
10.
Ipatov Yu.A., Krevetskii A.V. Metody obnaruzheniya i prostranstvennoi lokalizatsii grupp tochechnykh ob''ektov // Kibernetika i programmirovanie. – 2014. – № 6. – S.17-25.
11.
Kompleksnoznachnye i giperkompleksnye sistemy v zadachakh obrabotki mnogomernykh signalov / Ya.A. Furman, A.V. Krevetskii, A.A. Rozhentsov, i dr.; pod red. Ya.A. Furmana. – M.: FIZMATLIT, 2004. – 456 s.
12.
Krevetskii A.V., Chesnokov S.E. Kodirovanie i raspoznavanie izobrazhenii mnozhestv tochechnykh ob''ektov na osnove modelei fizicheskikh polei // Avtometriya, 2002. – №3. – S. 80–89.
Link to this article

You can simply select and copy link from below text field.

Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website