Статья 'Непараметрическая модель обучения для систем диагностики психофизиологических особенностей' - журнал 'Кибернетика и программирование' - NotaBene.ru
по

 

 

Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Peer-review in 24 hours: How do we do it? > Policy of publication. Aims & Scope. > Article retraction > Ethics > Copyright & Licensing Policy > Publication in 72 hours: How do we do it? > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming
Reference:

Non-parametric model of learning for a system of diagnostics of psycho- physiological qualities

Poriadin Anton

graduate student, Department of Information and Computer Systems, Volga State University of Technology

424000, Russia, Marii El, g. Ioshkar-Ola, Ploshchad' Lenina, 3

lazy.ant10@gmail.com
Oparin Kirill

graduate student, Department of Information and Computer Systems, Volga State University of Technology

424000, Russia, Marii El oblast', g. Ioshkar-Ola, ul. Ploshchad' Lenina, 3

kirill.oparin@hotmail.com

DOI:

10.7256/2306-4196.2016.2.18155

Review date:

28-02-2016


Publish date:

03-03-2016


Abstract.

The article studies support systems in field of diagnostics of person psycho-physiological qualities. The subject of the research is the use of neural networks in the development of tests for evaluation of the psycho-physiological state of a person. In this paper the authors examine the possibility of using neural networks to assess the psycho-physiological state of a person applying the achievements obtained by other researchers using neural networks to solve the problems of medical diagnostic, such as in the diagnosis of myocardial infarction or in recognition of emotions based on psycho- physiological parameters. The authors used mathematical modeling methods, such as methods of probability theory, mathematical statistics, artificial intelligence, methods of forecasting and decision-making. The study shows that neural network is an effective tool for the study of such stochastic systems as human. Using neural networks in systems of psycho- physiological diagnosis improves the accuracy of diagnosis by uncovering hidden relationships between different human systems. The ability to use neural networks for the treatment of psycho-physiological test results was confirmed using a generalized description of a neural network and examples of input and output neural network vectors for processing results of the test а reaction to moving object.

Keywords: diagnostics, psycho- physiological qualities of man, psycho-physiological tests, decision support, neural network, neurophysiology, reaction to moving object, tapping test, LVQ neural network, non-parametric model of learning
This article written in Russian. You can find full text of article in Russian here .

References
1.
Zolin A.G., Silaeva A.Yu. Primenenie neironnykh setei v meditsine // Aktu-al'nye problemy nauki, ekonomiki i obrazovaniya XXI veka: materialy II Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 5 marta – 26 sentyabrya 2012 goda: v 2-kh ch. Ch. 2 Samara: Samarskii institut (fil.) RGTEU, 2012. S. 264-271.
2.
Bodin O.N., Kuz'min A.V., Loginov D.S. Intellektual'nyi analiz elektro-kardiosignalov dlya diagnostiki infarkta miokarda // Izvestiya VUZov. Po-volzhskii region. Tekhnicheskie nauki. 2010. № 1. S. 46-53.
3.
Vishnevetskaya E.V., Gorbunov I.A. Ispol'zovanie neirosetevogo modelirova-niya dlya diagnostiki struktury emotsional'noi kompetentnosti rebenka po faktoram, vklyuchayushchim fiziologicheskie parametry // Vestnik YuUrGU. Se-riya: Komp'yuternye tekhnologii, upravlenie, radioelektronika. 2009. № 26(159). S. 26-34.
4.
Poryadin A.E. Metodika komp'yuternogo ekspress-testirovaniya, pozvolyayushchaya vyyavit' individual'nye osobennosti v skorosti reaktsii testiruemogo chelo-veka // Sotsial'nye, estestvennye i tekhnicheskie sistemy v sovremennom mire: sostoyanie, protivorechie, razvitie. Vosemnadtsatye Vavilovskie chteniya: materialy postoyanno deistvuyushchei mezhdunarodnoi mezhdistsiplinarnoi konfe-rentsii: v 2-kh ch. Ch. 1. Ioshkar-Ola: Povolzhskii gosudarstvennyi tekhnologi-cheskii universitet, 2015. S. 282–284.
5.
Il'ina M.N., Il'in E.P. Ob odnom iz uslovii diagnostirovaniya sily nerv-noi sistemu po vozbuzhdeniyu s pomoshch'yu tepping-testa // Psikhofiziologiche-skie osobennosti sportivnoi deyatel'nosti. L., 1975. S. 183-186.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website