Статья 'Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом' - журнал 'Кибернетика и программирование' - NotaBene.ru



Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Council of Editors > Peer-review process > Peer-review in 24 hours: How do we do it? > Policy of publication. Aims & Scope. > Article retraction > Ethics > Copyright & Licensing Policy > Publication in 72 hours: How do we do it? > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Cybernetics and programming

The use of artificial neural networks for the early diagnosis of diabetes

Mustafaev Arslan Gasanovich

Doctor of Technical Science

Professor of the Department "Information technologies and information security" of the Dagestan State University of National Economy

367015, Russia, respublika Dagestan, g. Makhachkala, ul. Ataeva, 5, kab. 4.5

Другие публикации этого автора




Review date:


Publish date:



Diabetes is a chronic disease, in the pathogenesis of which is a lack of insulin in the human body causing a metabolic disorder and pathological changes in various organs and tissues, often leading to a high risk of heart attack and kidney failure. The author makes an attempt to create a system for early diagnosis of diabetes patients using the device of artificial neural networks. The article presents a model of neural network based on multilayer perceptron trained by back-propagation algorithm. For the design of the neural network the author used Neural Network Toolbox из MATLAB 8.6 (R2015b) which is a powerful and flexible tool for working with neural networks. The results of training and performance tests of the neural network designed show its successful application for the task and the ability to find patterns and complex relationships between the different characteristics of the object. The sensitivity of the developed neural network model is 89.5%, specificity of 87.2%. Once the network is trained it becomes a reliable and inexpensive diagnostic tool.

Keywords: diabetes, artificial neural network, computer diagnostics, specificity, sensitivity, data classification, multilayer perceptron, back propagation of error, direct distribution network, training with teacher
This article written in Russian. You can find full text of article in Russian here .

faktov o diabete. [Elektronnyi resurs] Ofitsial'nyi sait Vsemirnoi organizatsii zdravookhraneniya http://www.who.int/features/factfiles/diabetes/ru/ (data obrashcheniya: 13.01.2016)
Berebin M.A., Pashkov S.V. Opyt primeneniya iskusstvennykh neironnykh setei dlya tselei differentsial'noi diagnostiki i prognoza narushenii psikhicheskoi adaptatsii. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta, 2006, №14, s.41-45.
Gil D., Johnsson M. Diagnosing Parkinson by using artificial neural networks and support vector machines. Global Journal of Computer Science and Technology, 2009, №9(4). pp.63-71.
Singh M., Singh M., Singh P. Artificial Neural Network based classification of Neuro-Degenerative diseases using Gait features. International Journal of Information Technology and Knowledge Management, 2013, Vol. 7, №1, pp. 27-30.
Basit A., Sarim M., Raffat K., etc. Artificial Neural Network: A Tool for Diagnosing Osteoporosis. Research Journal of Recent Sciences, 2014, Vol. 3(2), pp.87-91.
Mahesh C., Suresh V. G., Babu M. Diagnosing Hepatitis B Using Artificial Neural Network Based Expert System. International Journal of Engineering and Innovative Technology, 2013, Vol. 3, Issue 6, pp.139-144.
Yakh''yaeva G.E. Nechetkie mnozhestva i neironnye seti. M.: Internet-Universitet informatsionnykh tekhnologii: BINOM. Laboratoriya znanii, 2006. – 316 s.
Galushkin A. Neironnye seti. Osnovy teorii. Goryachaya Liniya – Telekom, 2012. - 496 s.
Link to this article

You can simply select and copy link from below text field.

Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website