Journal Menu
> Issues > Rubrics > About journal > Authors > Requirements for publication > Council of Editors > List of peer reviewers > Review procedure > Policy of publication. Aims & Scope. > Article retraction > Ethics > Legal information
Journals in science databases
About the Journal

В погоне за двумя зайцами поймай обоих сразу!
34 журнала издательства NOTA BENE входят одновременно и в ERIH PLUS, и в перечень изданий ВАК
При необходимости автору может быть предоставлена услуга срочной или сверхсрочной публикации!
MAIN PAGE > Back to contents
Methods of detection and spatial localization of groups of point objects
Ipatov Yurii Arkad'evich

PhD in Technical Science

Associate Professor of the Department of Informatics at the Volga State University of Technology

424000, Russia, Mari El, Yoshkar-Ola, pl. Lenina, d. 3
Krevetskii Aleksandr Vladimirovich

PhD in Technical Science

Professor, Department of Computer Science, Volga State University of Technology

424000, Rossiya, respublika Mariy El, g. Yoshkar-Ola, pl. Lenina, 3
Abstract. Modern systems of computer vision use intelligent algorithms that solve a wide class of problems from simple text recognition to complex systems of spatial orientation. One of the main problems for developers of such systems is in selection of unique attributes which remain invariant to various kinds of transformations. The article presents a comparative analysis of methods of detection and spatial localization of groups of point objects. The reviewed methods are compared by the performance and efficiency at specified dimensions. As of today there are no universal approaches to determine of such attributes, and its’ selection depends on the context of the problem being solved and on the registered conditions of observation. Various kinds of descriptors such as points, lines, angles and geometric primitives can be selected as dominating attributes. The authors study  algorithms for detection of groups of point objects based on the minimum spanning tree (MST) and using a model of associated continuous image (ACI).
Keywords: computer vision, object recognition, speed of the algorithm, modeling of point objects, associated continuous image, minimum spanning tree, group of point objects, point objects, intelligent algorithms, localization of groups
DOI: 10.7256/2306-4196.2014.6.13642
Article was received: 11-11-2014

Review date: 12-11-2014

Publish date: 16-11-2014

This article written in Russian. You can find full text of article in Russian here.

Szeliski R. Computer Vision: Algorithms and Applications. Springer, 2011 – 812 p.
Vuds R. Tsifrovaya obrabotka izobrazhenii. Per. s angl. pod red. P.A. Chochia. / R. Gonsales, R. Vuds-M.: Tekhnosfera, 2005.-1072 s.
Moravec H. Rover visual obstacle avoidance // Proc. Intl. Joint Conference on Artificial Intelligence. – 1981. – P. 785–790.
Harris C. G., Stephens M. J. Combined corner and edge detector // Proc. Fourth Alvey Vision Conference. – 1988. – P. 147–151.
Dzencharskii N. L. Poisk izobrazhenii s vydeleniem osobykh tochek na osnove veivlet-preobrazovaniya / N. L. Dzencharskii, M. V. Medvedev, M. P. Shleimovich // Vestnik Kazanskogo gosudarstvennogo tekhnologicheskogo universiteta. Kazan': Izd-vo KGTU, 2011. – № 1 – S.131–135.
D. L. Donoho, “Ridge functions and orthonormal ridgelets,” Journal of Approximation Theory, vol. 111, no. 2, pp. 143–179, 2001.
Hough P. V. C. Methods, Means for Recognizing Complex Patterns / U.S., Patent 3069654, 1962.
J. Matas, O. Chum, M. Urban, and T. Pajdla. "Robust wide baseline stereo from maximally stable extremal regions." Proc. of British Machine Vision Conference, pages 384-396, 2002.
Rosten E., Drummond T. Machine learning for high-speed corner detection // Proc. European Conference on Computer Vision. – 2006. – V. 1. – P. 430–443.
Lowe D. Object Recognition from Local Scale-Invariant Features / David G. Lowe // Proceedings of the International Conference on Computer Vision. 2. 1999, pp. 1150-1157.
Herbert B. SURF: Speeded Up Robust Features / B. Herbert, Andreas Ess, Tinne Tuytelaars, Luc Van Gool // Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, 2008, pp. 346-359.
Takacs G. Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features / G. Takacs, V. Chandrasekhar, S. Tsai, D. Chen, R. Grzeszczuk, B. Girod // [Elektronnyi resurs] CVPR2010_RIFF.pdf
Joseph. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. // Proc. AMS. 1956. Vol 7, No. 1. C. 48-50.
Novikov F.A. Diskretnaya matematika dlya programmistov / F.A. Novikov-SPb.: Piter, 2002 god.-420 str.
Okulov S.M. Programmirovanie v algoritmakh / S.M. Okulov-M.: BINOM. Laboratoriya znanii, 2004 g.-341 str.
Kormen T. Kh. Algoritmy: postroenie i analiz, 2-e izd. / T. Kh. Kormen, Ch. I. Leizerson, R. L. Rivest, K. Shtain — M.: Vil'yams, 2005. — 1296 s.
Rodzhers D. Algoritmicheskie osnovy mashinnoi grafiki. Per. s angl. / D. Rodzhers-M.: Mir, 1989. 512 c.
Krevetskii A.V. Invariantnye k forme obnaruzhenie i prostranstvennaya lokalizatsiya grupp tochechnykh ob''ektov v trekhmernom prostranstve [Tekst] / A. V. Krevetskii. // Vestnik Mariiskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy.-2011.-№ 1(11).-S. 47-52.
Krevetskii A.V. Spetsializirovannyi graficheskii redaktor lokatsionnykh izobrazhenii landshaftnykh stsen s gruppami malorazmernykh i tochechnykh ob''ektov [Tekst] / A. V. Krevetskii, D. V. Urzhumov. // Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy.-2012.-№ 2(16).-S. 24-28.
Ipatov Yu.A. Arkhitektura sistemy kompleksnogo deshifrirovaniya izobrazhenii aerokosmicheskikh izobrazhenii podstilayushchei poverkhnosti zemli v real'nom masshtabe vremeni [Tekst] / Yu. A. Ipatov, A. V. Krevetskii, D. V. Urzhumov, S. E. Chesnokov. // Vestnik Mariiskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Radiotekhnicheskie i infokommunikatsionnye sistemy.-2012.-№ 1(14).-S. 47-59.
Link to this article

You can simply select and copy link from below text field.

Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website