по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Peer-review in 24 hours: How do we do it? > Article retraction > Ethics > Copyright & Licensing Policy > Publication in 72 hours: How do we do it? > Digital archiving policy > Open Access Policy > Open access publishing costs > Article Identification Policy > Plagiarism check policy > Editorial Board > Council of Editors
Journals in science databases
About the Journal

Публикация за 72 часа - теперь это реальность!
При необходимости издательство предоставляет авторам услугу сверхсрочной полноценной публикации. Уже через 72 часа статья появляется в числе опубликованных на сайте издательства с DOI и номерами страниц.
По первому требованию предоставляем все подтверждающие публикацию документы!
MAIN PAGE > Back to contents
Historical informatics
Reference:

Review of Arnold T., Tilton L. Humanities Data in R: Exploring Networks, Geospatial Data, Images and Text. Springer, 2017. - 211 p.
Borodkin Leonid Iosifovich

Doctor of History

Professor, Historical Information Science Department Head, Faculty of History, Lomonosov Moscow State University,  corresponding member of the Russian Academy of Sciences 

119991, Russia, Moskva oblast', g. Moscow, ul. Lomonosovskii Prospekt, 27-4

borodkin-izh@mail.ru
Другие публикации этого автора
 

 

Article was received:

26-07-2018


Review date:

26-07-2018


Abstract.

The article briefly describes the integrated software R and the book by American authors about the use of R in humanities and social sciences. This book demonstrates functions of R which has become popular in applied studies of different research fields and now is widely used in humanities as well. The authors’ aim is to teach the humanities readers to use R functions in four spheres of data work which are important for humanities scholars and represented by networks, texts, maps and images. The book employs the comparative approach (to compare R package with other software tools) and is the first to characterize R when one works with data of studies in humanities. Taking into account that R is not widely applied by Russian humanities scholars, brief information about this nontrivial software is provided. The open source programming language R and its numerous packages is conspicuous of modern approach to analyze heterogeneous data. 

Keywords: method of principal components, natural language analysis, exploratory data analysis, image processing, text analysis, analysis of geospatial data, network analysis, R software, cluster analysis, digital humanities

DOI:

10.7256/2585-7797.2018.2.26986

Publish date:

02-08-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Lexical Collocation Analysis: Advances and Applications / Cantos-Gómez, Pascual, Almela-Sánchez, Moisés (Eds.). Springer, 2018.
2.
Tracing the Life Cycle of Ideas in the Humanities and Social Sciences / Tuzzi, Arjuna (Ed.). Springer,2018.
3.
Prehistoric Warfare and Violence: Quantitative and Qualitative Approaches / Dolfini, A., Crellin, R., Horn, C., Uckelmann, M. (Eds.). Springer, 2018.
4.
Mixed-Effects Regression Models in Linguistics / Speelman, Dirk, Heylen, Kris, Geeraerts, Dirk (Eds.). Springer, 2018.
5.
Desagulier, Guillaume. Corpus Linguistics and Statistics with R: Introduction to Quantitative Methods in Linguistics. Springer, 2017.
6.
Heritage and Archaeology in the Digital Age: Acquisition, Curation, and Dissemination of Spatial Cultural Heritage Data / López-Menchero Bendicho, V.M., Ioannides, M., Levy, Th.E. (Eds.). Springer, 2017.
7.
Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing / Forte, Maurizio, Campana, Stefano R.L. (Eds.). Springer, 2016.
8.
Abedin Jaynal, Kumar Das Kishor. Data Manipulation with R. 2nd Edition. — Packt Publishing, 2015. — 130 p.
9.
Albert J., Rizzo M. R by Example. Springer, 2012. — 374 p. — (Series "Use R!").
10.
Bilder C.R., Loughin T.M. Analysis of Categorical Data with R. Boca Raton: CRC Press Taylor & Francis, 2013.-533p.
11.
Luke D.A. A User's Guide to Network Analysis in R. Springer, 2015. — 238 p.
12.
Tattar P.N., Ramaiah S., Manjunath B.G. A Course in Statistics with R. Wiley, 2016. — 768 p.
13.
A.B. Shipunov, E.M. Baldin, P.A. Volkova, A.I. Korobeinikov, S.A.Nazarova, S.V. Petrov, V.G. Sufiyanov. Naglyadnaya statistika. Ispol'zuem R!--M.: DMK Press, 2012.--298 s.
14.
Kabakov R. R v deistvii. Analiz i vizualizatsiya dannykh na yazyke R. M., DMK-Press, 2014. — 588 s.
15.
Mastitskii S.E., Shitikov V.K. Statisticheskii analiz i vizualizatsiya dannykh s pomoshch'yu R. 2014. – Elektronnaya kniga, adres dostupa: http://r-analytics.blogspot.com
16.
Zaryadov I.S. Vvedenie v statisticheskii paket R: tipy peremennykh, struktury dannykh, chtenie i zapis' informatsii, grafika. M.: Izd-vo RUDNB, 2010.-207 s.
17.
Uikem Kh., Groulmund G. Yazyk R v zadachakh nauki o dannykh: import, podgotovka, obrabotka, vizualizatsiya i modelirovanie dannykh — M., izd-vo Vil'yams, 2018. — 592 s.
18.
Shitikov V. K., Mastitskii S. E. Klassifikatsiya, regressiya, algoritmy Data Mining s ispol'zovaniem R. 2017.-Elektronnaya kniga, adres dostupa: http://www.ievbras.ru/ecostat/Kiril/R/DM/DM_R.pdf
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website