Статья 'The Capturing of Space Debris with a Spaceborne Multi-fingered Gripper' - журнал 'Space Research' - NotaBene.ru
по
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Peer-review process > Article retraction > Ethics > Online First Pre-Publication > Copyright & Licensing Policy > Digital archiving policy > Open Access Policy > Article Processing Charge > Article Identification Policy > Plagiarism check policy > Editorial collegium > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Back to contents
Space Research
Reference:

The Capturing of Space Debris with a Spaceborne Multi-fingered Gripper

In' Chzhan

Исследователь Робототехнического института, Пекинский университет авиации и космонавтики 

37 Xue Yuan Lu, Haidian Qu, Beijing Shi, China 100191

zhangyin2017@yahoo.com
Tsyan Chzhan'

Исследователь Института робототехники, Пекинский университет авиации и космонавтики

37 Xue Yuan Lu, Haidian Qu, Beijing Shi, China, 100191

qzhan@buaa.edu.cn

DOI:

10.7256/2453-8817.2017.3.24667

Received:

09-11-2017


Published:

27-12-2017


Abstract: With the massive launching of spacecraft, more and more space debris are making the low Earth orbit (LEO) much more crowded which seriously affects the normal flight of other spacecrafts. Space debris removal has become a very urgent issue concerned by numerous countries. In this paper, using SwissCube as a target, the capturing of space debris with a spaceborne four-fingered gripper was studied in order to obtain the key factors that affect the capturing effect. The contact state between the gripper fingers and SwissCube was described using a defined contact matrix. The law of momentum conservation was used to model the motion variations of the gripper and SwissCube before and after the capturing process. A zero-gravity simulation environment was built using ADAMS software. Two typical kinds of capturing processes were simulated considering different stiffness of fingers and different friction conditions between fingers and SwissCube. Comparisons between results obtained with the law of momentum conservation and those from ADAMS simulation show that the theoretical calculations and simulation results are consistent. In addition, through analyzing the capturing process, a valuable finding was obtained that the contact friction and finger flexibility are two very important factors that affect the capturing result.


Keywords:

Space Debris, Multi-fingered Gripper, Capturing process, Flexibility, Contact Friction, Design and Development, Robotics, Virtual Prototype Development, Low Earth orbit, SwissCube

References
1. M.H. Shan, J. Guo and E. Gill, Review and comparison of active space debris capturing and removal methods, Prog Aerosp Sci. 80 (2016) 18-32.
2. J.-C. Liou, N.L. Johnson and N.M. Hill, Controlling the growth of future LEO debris populations with active debris removal, Acta Astronaut. 66 (2010) 648-653.
3. C. Bonnal, J.M. Ruault and M.C. Desjean, Active debris removal: recent progress and current trends, Acta Astronaut. 85 (2013) 51-60.
4. G. Creamer, The SUMO/FREND project: technology development for autonomous grapple of geosynchronous satellites, Adv Astronaut Sci. 128 (2007) 895-909.
5. T. Boge, T. Wimmer, O. Ma and M. Zebenay, EPOS-A robotics-based hardware-in-the-loop simulator for simulating satellite RvD operations. In: 10th International symposium on artificial intelligence, robotics and automation in space, Sapporo, Japan, 2010.
6. J.A.F. Deloo, Analysis of the rendezvous phase of e.Deorbit: guidance, communication and illumination. PhD Thesis, Delft University of Technology, NL, 2015.
7. S. Kawamoto, T. Makida, F. Sasaki, et al, Precise numerical simulations of electrodynamic tethers for an active debris removal system, Acta Astronaut. 59 (2006) 139-148.
8. C.R. Phipps, K.L. Baker, S.B. Libby, et al, Removing orbital debris with lasers, Adv Space Res. 49 (2012) 1283-1300.
9. M. Richard, L. Kronig, F. Belloni, et al, Uncooperative rendezvous and docking for MicroSats, In: 6th International conference on recent advances in space technologies, Istanbul, Türkiye, 12-14 June 2013.
10. O.A. Araromi, I. Gavrilovich, J. Shintake, et al, Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper, IEEE/ASME Transactions on Mechatronics. 20 (2015) 438-446.
Link to this article

You can simply select and copy link from below text field.


Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.