по
Arctic and Antarctica
12+
Journal Menu
> Issues > Rubrics > About journal > Authors > About the Journal > Requirements for publication > Review procedure > Article retraction > Ethics > Legal information > Editorial Board > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Journal "Arctic and Antarctica" > Rubric "Grounds of Cold Regios"
Grounds of Cold Regios
Maslakov A. - The assessment of geocryological threats to the developed territories of Eastern Chukotka pp. 57-72

DOI:
10.7256/2453-8922.2017.4.24863

Abstract:  This article presents and tests the method of assessment of the various geocriological threats to the developed territories of Eastern Chukotka. The research is based on the complex of field geodesic, geophysical, and geocryological measurements conducted in the core settlement of the indicated region (Lorino), as well as archival data of the engineering surveys of previous years. Based on the acquired materials using the calculation methods, the author was able to determine the current geocryological situation in subsoil of the settlement along with the development level of the negative cryogenic processes and phenomena. In the course of this war was performed the assessment of threats associated with the changes in cryogenic situation and development of the negative cryogenic processes. As a result of this research, the author allocated the sections of settlement within which is traced the low level of natural sustainability of lithocryogenic ground in terms of technogenic disturbance, as well as high level of threat pertaining to decline in the carrying capacity of refrigerated piles and increase of tangential forces of frost heaving of soil.
Efimov V.M., Stepanov A.V., Tappyrova N.I., Kravtsova O.N., Stepanov A.A. - Impact of the freeze-thaw cycles upon the heat and mass transfer properties of the technogenic cryogenic soil of the northeastern regions of the cryolithozone pp. 73-79

DOI:
10.7256/2453-8922.2017.4.25027

Abstract: This article concentrates on the experimental research of the heat and mass transfer properties of the technogenic soil of Yakutia that are subject to freeze-thaw cycles. Definition is given to the technogenic soils according to the GOST 25100-95. The work cites the established fact of significant difference in the coefficient of filtration of naturally located soils of seasonal layer of thaw from indexes acquired in controlled conditions. It is substantiated that there is a need to research the heat and mass transfer properties of the technogenic soils with consideration of the cyclic impact of the low temperatures and changes in the cryogenic structure for a more complete correspondence with the northern conditions. The authors analyze  the acquired data, approximate the experimental data via the methods of statistical processing and compare it with the data from other sources. The conducted research allowed determining the dependence of the thermophysical properties of the technogenic soils upon their moisture, temperature and loam content.
Efimov V.M., Kravtsova O.N., Stepanov A.V., Timofeev A.V., Vasil'chuk Y.K., Tappyrova N.I. - Research on the impact of the surface active agents upon the strength of the frozen soil of the cryolithozone of the Sakha Republic (Yakutia) pp. 80-85

DOI:
10.7256/2453-8922.2017.4.25035

Abstract: This article focuses on the experimental research of the impact of additives of surface active agents upon the strength of the frozen dispersed soils. The work touches on the problem of finding new theoretical approaches towards mechanical properties of dispersed soils accounting for presence of free surface energy and impact of the physical chemistry factors upon the behavior and properties of the soils. Substantiation is made on the physical chemistry approach as the most promising one in this area. Pyotr Rebinder’s mechanism for strengthening thawed soils through the effects of the surface active agents is presented in this research. Experimental research was conducted on the strength characteristics of the frozen dispersed soils with use of surfactants and without additives. The conducted research yielded experimental curve relationship of the maximal strength from time for frozen sand and loam with surfactants and without.
Efimov V.M., Vasil'chuk Y.K., Rozhin I.I., Popenko F.E., Stepanov A.V. - Modeling of the temperature schedule of the soil foundations with thermal stabilizers in the cryolithozone of the Sakha Republic (Yakutia) pp. 86-97

DOI:
10.7256/2453-8922.2017.4.25036

Abstract: This article examines the issue of numerical modeling of the soil freezing-thaw process for projection of thermal stabilization system of soil building foundations in the cryolithozone of the Sakha Republic (Yakutia). The goal of this work consists in studying the process of formation of the temperature field of the massif of the soils under the effect of thermal stabilizers. Research is conducted on the process of formation of ice wall as the result of thermal exchange of the soil with the thermal stabilizers and external cool air during clearing of the snow cover from the construction site. The main conclusions of the conducted research include the need for development of mathematical models that would account for the mass exchange processes in the zones of effect of the thermal stabilizers with consideration of the conditions of formation of the cryogenic textures in the process of forced freezing of the soils. There is also a need for mathematical explanation of the phenomena of condensation and evaporation of Freon taking place inside the thermal stabilizers.
Efimov V.M., Popenko F.E., Rozhin I.I., Stepanov A.V., Bol'shev K.N. - Formation of the temperature of foundation soils during usage of thermal stabilizers in the conditions of the cryolithozone of the central Yakutia pp. 98-105

DOI:
10.7256/2453-8922.2017.4.25037

Abstract: The subject of this research is the interaction of the seasonal thermal stabilizers with the soils, processes of thermal and mass transfer and formation of cryotextures. The thermal stabilizers found broad implementation in northern construction for strengthening foundations of buildings formed with plastic and thawed dispersed soils with installation of Anti-filtration screens and ice walls. The efficiency of the work of thermal stabilizers is assessed based on the rate of formation of the calculated temperature schedule in foundations of engineering structures. The presented data of formation of temperatures of the soil foundations cooled by the liquid-vapor thermal stabilizers reflect regularities characteristic for dispersed soils of all types with various indexes of moisture and salinization for buildings with ventilated crawl spaces.  
Kotelevets D.V., Skobelev A.D. - The ice content and the porosity of frozen grounds of the Kharasavey gas field according to electrical sounding data pp. 116-125

DOI:
10.7256/2453-8922.2016.2.21428

Abstract: The research object is the frozen grounds of the Kharasavey gas field (the Yamal peninsula), occurring at a depth of 50 m. The purpose of the paper is to study the electrophysical characteristics of frozen grounds, depending on such factors as lithology, thawed and frozen state, water salinity, humidity and porosity. At a temperature higher than the congelation temperature, the electric characteristics almost don’t depend on the temperature, but upon getting beyond this temperature point, significant changes of characteristics can be observed – a part of interstitial water freezes and turns into dielectric ice. The research was carried out in summer 2015 and was based on the electrical resistivity tomography method with the diversity from 7,5 to 221,5 m, helping achieve the desired depth. The research was carried out using the electrical resistivity tomography station “Omega-48”. The electromagnetic survey of vertical electric sounding in the modification of electrical resistivity tomography helps detect electrical characteristics of massive materials and their spacing. On the obtained electrical resistivity tomography profile the authors extract the layer of frozen sand, but its freezing within the studied area is not solid – in the eastern part the sand freezing zone decreases due to the presence of lakes, hampering sand freezing. The authors have found the geocryological structure, resembling cryopeg in its form and structure, in the studied profile. 
Kotelevets D.V., Vasil'chuk J.Y. - Complex geophysical study of lithalsa permafrost mounds in Sentsa river valley, Buryatia republic pp. 122-132

DOI:
10.7256/2453-8922.2018.1.25935

Abstract: The object of the study are ice-mineral permafrost mounds (lithalsas) in the valley of the Sentsa River in the Eastern Sayan Mountains (52º39.827' N, 99º29.858' E). The aim of the research is to study the internal structure of the mounds and, in particular, the depth of occurrence of ice lenses. The article examines the magnetic susceptibility of alluvial soils and entic podzols to determine the intensity of Fe illuvial process. The content of organic carbon and iron in soils was measured. Electromagnetic prospecting was performed using a symmetric four-electrode Schlumberger installation using a set of ASTRA-100 (generator) and MERI-24 (measuring instrument). The magnetic susceptibility of the soil was measured using a portable magnetic susceptibility meter PIMV-M over a uniform grid of 20 cm. The total content of Fe in soils was measured by ICP-MS. It was established that the ice lenses are located at depths of about 4 meters and have a vertical thickness of 10 meters. The presence of two separate ice lenses in the largest of the studied mounds was established. Magnetometry confirmed the high intensity of the Fe illuvial process in lithalsa soils. Ground squirrels inhabiting this area create places for the accumulation of iron compounds.
Maslakov A. - The results of active layer studies near Lorino settlement, Eastern Chukotka pp. 127-139

DOI:
10.7256/2453-8922.2017.1.22482

Abstract: The paper contains the results of active layer studies in Lorino monitoring site (Eastern Chukotka, Russia), conducted in framework of the Circumpolar Active Layer Monitoring (CALM) program during 2010-2015. The study site includes tundra landscapes of Eastern Chukotka coastal lowlands. The main purpose of the paper is to obtain spatial and temporal patterns of seasonal melting distribution and reveal the main natural factors defining active layer depth within study site. The author demonstrates the predominance of thermal forcing in active layer development, which was strongly complicated by local (microrelief, vegetation, soil moisture, etc.) conditions. These factors determined high spatial and temporal variability of active layer thickness within single grid (100×100 m). The study also reveals the lack of statistical data on natural characteristics and the need for further detailed studies of seasonal melting process.
Efimov V.M., Rozhin I.I., Popenko F.E., Popenko F.E., Stepanov A.V., Stepanov A.A., Vasil'chuk Y.K. - Arrangement of bored piles in the cryolithozone of central Yakutia pp. 133-141

DOI:
10.7256/2453-8922.2018.1.25936

Abstract: The article deals with the problems of arranging pile foundations on the territory of the Republic of Sakha (Yakutia) using bored piling. This technology, which is not so widespread in the republic, is simpler and more convenient, in contrast to reinforced concrete foundation piles. In the process of hardening concrete during the arrangement of the bored pile, local fission of frozen soil occurs. Therefore, when using bored piles in the cryolithozone, the problem of determining the design temperatures and the time of formation of the stationary soil regime at the base of the entire pile field, which allows full loading of the foundations, becomes especially critical. Field observations of the temperature regime of soils near the bored pile during its arrangement and hydration of concrete were carried out. In the course of the study, data was obtained on the dynamics of the temperature regime of the soil near the bored pile in the process of its arrangement. The data obtained show that stable negative temperatures over the entire depth of the well are observed one month after pouring, during which period the pile attains most of its strength.
Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website