Arctic and Antarctica
Journal Menu
> Issues > Rubrics > About journal > Authors > Requirements for publication > Review procedure > Article retraction > Ethics > Legal information > Concept of the journal > Editorial Board > Council of Editors
Journals in science databases
About the Journal
MAIN PAGE > Journal "Arctic and Antarctica" > Rubric "Climates of the Arctic and Antarctica"
Climates of the Arctic and Antarctica
Surkova G.V., Krylov A.A. - Changes of hydrothermal climate resources of the Arctic in the context of global warming of the 21st century pp. 47-61


Abstract: The author studies the change of climate resources of the Arctic in the context of global warming, forecast in the 21st century. The authors pay special attention to the values of climate resources, calculated on the base of temperature and precipitation values. The article studies daily points of extremum of surface air temperature, yearly amounts of air temperatures in different ranges and the longevity of periods with such temperatures, fuel performance index, amount and type of precipitations at different air temperatures, and the number of days with such precipitations. Climate resources are calculated on the base of a climate forecast of a group of climate models of the CMIP5 project for the RCP8.5. scenario. To estimate climate resources, the authors use daily model data about air temperature and precipitation total for the period of 1950-2100. in latitudinal zone of 60-90 degrees of north latitude. The authors of the present study are the first to acquire the results of a complex forecast of climate resources of the Arctic. The study shows that, in the context of global warming, the spatial heterogeneity of the forecast anomalies of climate resources is well-defined. The most vivid changes of hydrothermal climate resources by the end of the 21st century are expected above the Northern Atlantic, the seas of Western Europe, the Barents and the Chukchi seas. The least significant changes are expected above Greenland. 
Vasil'chuk Y.K. - Spatio-temporal distribution of mean January air temperature over the Russian Arctic during 30-12 ka BP with high temporal resolution pp. 86-103


Abstract: The palaeoreconstructions of the mean January temperatures based on the distribution of δ values (oxygen isotope composition) in the Late Pleistocene ice wedges in yedoma dated by radiocarbon are yielded. Verification of the equation linking current data of δ values in modern ice wedges with mean January temperatures has been done. In yedoma of different regions of the Russian Arctic formed 30-12 ka BP made the analysis reliability of radiocarbon ages. It is enabled to set on the time scale the isotopic events with high temporal resolution - with step 2-4 ka. New maps of the mean January palaeotemperatures for the time intervals 30-28, 24-22, 20-18, 16-12 ka BP are created for the Russian Arctic.
Shestakova A.A. - The Novaya Zemlya bora: the downwind characteristics and the incident flotation structure pp. 86-98


Abstract: The Novaya Zemlya bora is the strong abrupt wind, appearing on the western shoulders of the Novaya Zemlya mountain. Such winds reckon in downwind storms, appearing upon the wind flowing over mountains. They are characterized by the increase of wind speed, air temperature jumps and the lapse of pressure on the downwind side. The character of atmospheric disturbances on the downwind side is determined by the landscape and the parameters of the incident flotation. Therefore, the authors give special attention to the structure of the incident flotation and hydrodynamic criteria of the partial blocking of the flow with mountains. Based on the observation data and the MERRA reanalysis, the authors analyze 12 episodes of the Novaya Zemlya bora. They define the specific temperature and wind structure of the incident flotation -  the presence of the raised inversion level, the low-tropospheric streamflow at the altitudes, close to the mountain height, the wind reaction to the height. The authors reveal the decrease of the partial blocking of the flow by the mountains in the moments of the bora maximum development. The authors demonstrate that the wind speed during bora is controlled, primarily, by the mesoscale pressure gradient, which can appear in the result of gravity waves distribution over the mountain (wave resistance). The authors show that the Novaya Zemlya bora is very similar to Novorossiysk bora and other winds of this type.  
Other our sites:
Official Website of NOTA BENE / Aurora Group s.r.o.
"History Illustrated" Website